Deteksi Level Kolesterol melalui Citra Mata Berbasis HOG dan ANN
Sari
ABSTRAK
Kolesterol merupakan lemak yang berada di dalam darah yang dibutuhkan untuk pembentukan hormon dan sel baru. Kadar kolesterol normal harus kurang dari 200 mg/dL, namun jika di atas 240 mg/dL akan berisiko tinggi terkena penyakit stroke dan jantung koroner. Penelitian ini menghasilkan suatu sistem yang dapat mendeteksi kadar kolesterol seseorang melalui citra mata menggunakan metode iridologi dan image processing. Citra mata diperoleh dari pasien laboratorium klinik sebanyak 120 citra mata. Proses sistem diawali dengan mengolah citra mata dengan metode cropping, resize, dan segmentasi. Metode ekstaksi ciri menggunakan Histogram of Oriented Gradients (HOG), dan klasifikasi menggunakan Artificial Neural Network (ANN). Sistem dapat mendeteksi kadar kolesterol dengan tiga level klasifikasi, yaitu normal, berisiko kolesterol tinggi, dan kolesterol tinggi dengan tingkat akurasi sebesar 93% dan waktu komputasi 0,0862 detik.
Kata kunci: citra mata, kadar kolesterol, Histogram of Oriented Gradients, Artificial Neural Network
Â
ABSTRACT
Cholesterol is fat in the blood that is needed for the formation of hormones and new cells. Normal cholesterol levels should be less than 200 mg / dL, but if above 240 mg / dL will be at high risk of stroke and coronary heart disease. This study produced a system that can detect a person's cholesterol levels through eye images using iridology and image processing methods. Eye images obtained from clinical laboratory patients were 120 eye images. The system process begins with processing eye images using the method of cropping, resizing, and segmentation. Feature extraction method uses Histogram of Oriented Gradients (HOG), and classification using Artificial Neural Network (ANN). The system can detect cholesterol levels with three levels of classification, namely normal, at high risk of cholesterol, and high cholesterol with an accuracy rate of 93% and computing time of 0.0862 seconds.
Keywords: eye image, cholesterol level, Histogram of Oriented Gradients, Artificial Neural Network
Kata Kunci
Teks Lengkap:
PDFReferensi
Adi, K. G., & Rao, P. V. (2017). Analysis and Design of Cholesterol Detection in MRI Imaging. Journal of Ecophysiology and Occupational Health, 17(1&2), 72 - 78.
Adi, K. G., Rao, P. V., & Adi, V. K. (2015). Analysis and Detection of Cholesterol by Wavelets based and ANN Classification. Procedia Materials Science, 10, 409 – 418.
Baghini, A. N., Soltanshahi, M., & Rajabi, A. (2017). Diagnosis of Hyperlipidemia in Patients based on an Artificial Neural Network with PSO Algorithm. Journal of Advances in Computer Engineering and Technology, 3(1), 19 – 30.
Djalal, M. R., Hutoro, K. H., Imran, A. (2017). Kontrol Kecepatan Motor Induksi menggunakan Algoritma Backpropagation Neural Network, Elkomnika, 5(2), 138 - 148.
Gornale, S. S., Patravali, P. U., Marathe, K. S., Hiremath, P. S. (2017). Determination of Osteoarthritis using Histogram of Oriented Gradients and Multiclass SVM. International Journal of Image, Graphics and Signal Processing, 9(12), 41 – 49.
Kumar, S. V. M., Gunasundari, R., & Ezhilvathani, N. (2016). Non-Invasive Measurement of Cholesterol Levels Using Eye Image Analysis Regression analysis. International Conference on Advances in Computational Intelligence and Communication (CIC 2016), (pp. 33 - 42).
Munir, R. (2004). Pengolahan Citra Digital. Bandung: Informatika.
Nazir, M., Jan, Z., & Sajjad, M. (2017). Facial Expression Recognition using Histogram of Oriented Gradients based Transformed Features. Cluster Computing, 21(1), 539 – 548.
Novamizanti, L. (2009). Identifikasi Pola Iris Mata Menggunakan Dekomposisi Transformasi Wavelet dan Levenshtein Distance. Bandung: IT Telkom.
Ramlee, R. A., Ramli, A. R., Hanafi, Marsyita, Mashohor, M., Noh, Z. M. (2016). Comparison of Classifiers for Detecting the Corneal Arcus as a Symptom of Hyperlipidemia. Journal of Built Environment, Technology and Engineering, 1 (9), 154 – 159.
Songire, S. G., & Joshi, M. S. (2016). Automated Detection of Cholesterol Presence using Iris Recognition Algorithm. International Journal of Computer Applications, 133(6), 41 – 45.
DOI: https://doi.org/10.26760/elkomika.v7i2.284
Refbacks
- Saat ini tidak ada refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.