Kompresi Sinyal EKG menggunakan Teknik Parameter Extraction

CINTHIA ALIWARGA, ALOYSIUS ADYA PRAMUDITA, MARIA ANGELA KARTAWIDJAJA

Abstract


ABSTRAK

Sistem healthcare IoT menyebabkan peningkatan trafik komunikasi dan jumlah penyimpanan data. Elektrokardiogram (EKG) adalah salah satu alat yang berperan penting dalam healthcare IoT. Pasien yang mengalami kelainan jantung perlu dipantau oleh EKG dalam periode waktu lama sehingga menghasilkan data dalam jumlah yang sangat besar. Kompresi data mampu menjadi solusi masalah di atas. Penelitian ini melakukan kompresi sinyal EKG menggunakan metode parameter extraction untuk satu siklus sinyal dari dua belas pasien yang dipilih secara acak. Hasil penelitian menunjukkan bahwa kinerja kompresi baik, ditunjukkan oleh nilai Compression Ratio (CR) 6,24 dan Mean Square Error (MSE) 0,0018.

Kata kunci: IoT, EKG, kompresi data, parameter ekstraction.

 

ABSTRACT

Healthcare IoT causing higher data communication traffic and storage. Electrocardiogram (ECG) is one of the important device in healthcare IoT. Patient whose have heart abnormality needs ECG monitoring for long period of time, this causing a big data size. Data compression become one of the solutions for this problem. This research focused on data compression using parameter extraction method for one cycle ECG signal from twelve patients.This research has a good result with Compression Ratio (CR) 6,24 and Mean Square Error (MSE) 0,0018.

Keywords: IoT, ECG, data compression, parameter extraction


Keywords


IoT; EKG; kompresi data; parameter ekstraction

References


Blanco-Velasco, M., Cruz-Roldán, F., Godino-Llorente, J. I., Blanco-Velasco, J., Armiens- Aparicio, C., & López-Ferreras, F. (2005). On the use of PRD and CR parameters for ECG compression. Medical Engineering and Physics, 27(9), 798–802. https://doi.org/10.1016/j.medengphy.2005.02.007

Fong, A., Mittu, R., Ratwani, R., & Reggia, J. (2014). Predicting electrocardiogram and arterial blood pressure waveforms with different Echo State Network architectures. AMIA ... Annual Symposium Proceedings. AMIA Symposium, (pp. 544–553). https://doi.org/10.1016/j.bica.2013.07.005

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C. K., Stanley, H. E., (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Retrived from https://physionet.org/cgi-bin/atm/ATM.

Mishra, T. K., & Rath, P. K. (2011). Pivotal role of heart rate in health and disease. Journal, Indian Academy of Clinical Medicine, 12(4), 297–302.

Moody, G.B., (2010). MIT-BIH Arrhythmia Database Introduction. Retrived from https://physionet.org/physiobank/database/html/mitdbdir/intro.htm

Mukhopadhyay, S., & Sircar, P. (1996). Parametric modelling of ECG signal. Medical and Biological Engineering and Computing, 34(2), 171–174. https://doi.org/10.1007/BF02520024

Němcová, A., Smíšek, R., Maršánová, L., Smital, L., & Vítek, M. (2018). A comparative analysis of methods for evaluation of ECG signal quality after compression. BioMed Research International, 2018. https://doi.org/10.1155/2018/1868519

Pramudita, A. A., Aliwarga, C., Sari, L., & Kartawidjaja, M. A., (2017). ECG signal model parameters extraction method for data compression. 3rd International Conference on Engineering of Tarumanegara (ICET) : Smart Engineering for Future Cities, Universtias Tarumanegara. Jakarta : Faculty of Engineering Universtias Tarumanegara

Singh, B., Kaur, A., & Singh, J. (2015). A Review of ECG Data Compression Techniques. International Journal of Computer Applications, 116(11), 975–8887. https://doi.org/10.2307/1435861

Zigel, Y., Cohen, A., & Katz, A. (2000). ECG signal compression using analysis by synthesis coding. IEEE Transactions on Biomedical Engineering, 47(10), 1308–1316. https://doi.org/10.1109/10.871403




DOI: https://doi.org/10.26760/elkomika.v7i2.308

Refbacks

  • There are currently no refbacks.


_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License