Robot Inverted Pendulum Beroda Dua (IPBD) dengan Kendali Linear Quadratic Regulator (LQR)

FAHMIZAL FAHMIZAL, MUHAMMAD ARROFIQ, RONALD ADRIAN, AFRIZAL MAYUB

Sari


ABSTRAK

Makalah ini memaparkan proses pemodelan robot inverted pendulum beroda dua (IPBD) menggunakan dinamika Lagrange. Setelah sistem model robot IPBD diperoleh, teknik kendali optimal dalam hal ini menggunakan linear quadratic regulator (LQR) digunakan untuk melihat step respon sistem dan tanggapan respon sistem terhadap gangguan. Sebelum kendali LQR diimplementasikan, simulasi menggunakan Simulink Matlab dilakukan untuk mendapat parameter gain K pada kendali LQR. Selanjutnya, dengan mengubah-ubah matriks pembobot Q akan diperoleh variasi gain K. Pada penelitian ini dilakukan variasi matriks pembobotan Q sebanyak lima jenis. Sedangkan matriks elemen R dituning dengan nilai satu. Dari hasil pengujian diperoleh bahwa dengan membesarkan pembobotan matriks Q, dihasilkan respon menuju keadaan steady lebih cepat dan overshoot berkurang. Parameter gain K dari hasil simulasi selanjutnya akan diimplementasikan secara embedded programming ke dalam Arduino Uno pada sistem robot IPBD.

Kata kunci: Inverted pendulum beroda, Pemodelan, LQR

 

ABSTRACT

This paper describes the process of modeling two-wheeled pendulum inverted robots (IPBD) using the Lagrange dynamics. After the IPBD robot model system was obtained, the optimal control technique in this case using a linear quadratic regulator (LQR) was used to see the system response step and the response of the system response to interference. Before the LQR control is implemented, simulation using Matlab Simulink is conducted to get the gain K parameter on the LQR control. Furthermore, by varying the weighting matrix Q, the gain variation K will be obtained. There are five types of Q weighting matrix in this research and the R element matric is tuned with a value of 1. From the test, obtained results show that by raising the weighting matrix Q is produced a faster response to the steady state and overshoot is reduced. At the final stage, the gain K parameter from the simulation results will be implemented by embedded programming into Arduino Uno on the IPBD robot system.

Keywords: Wheeled inverted pendulum, Modelling, LQR


Kata Kunci


Inverted pendulum beroda, Pemodelan, LQR;

Teks Lengkap:

PDF

Referensi


Fasola, J., & Matarić, M. J. (2013). A socially assistive robot exercise coach for the elderly. Journal of Human-Robot Interaction, 2(2), 3-32.

Song, G., Yin, K., Zhou, Y., & Cheng, X. (2009). A surveillance robot with hopping capabilities for home security. IEEE Transactions on Consumer Electronics, 55(4).

Nagatani, K., Kiribayashi, S., Okada, Y., Tadokoro, S., Nishimura, T., Yoshida, T., ... & Hada, Y. (2011, November). Redesign of rescue mobile robot Quince. In Safety, Security, and Rescue Robotics (SSRR), 2011 IEEE International Symposium on (pp. 13-18). IEEE.

Kim, K., Bae, S., & Huh, K. (2010, October). Intelligent surveillance and security robot systems. In 2010 IEEE Workshop on Advanced Robotics and its Social Impacts (pp. 70-73). IEEE.

Zhang, H., Zhang, J., Zong, G., Wang, W., & Liu, R. (2006). Sky cleaner 3: A real pneumatic climbing robot for glass-wall cleaning. IEEE Robotics & Automation Magazine, 13(1), 32-41.

Kuo, C. H., Zal, F., & Wu, S. L. (2016). Development of Fuzzy Logic Controllers for Controlling Bipedal Robot Locomotion on Uneven Terrains with IMU Feedbacks. Indian Journal of Science and Technology, 9(28).

Mayub, A., & Fahmizal, F. (2018). Center of Pressure Feedback for Controlling the Walking Stability Bipedal Robots using Fuzzy Logic Controller. International Journal of Electrical and Computer Engineering (IJECE), 8(6).

Pratama, D., Binugroho, E. H., & Ardilla, F. (2015, September). Movement control of two wheels balancing robot using cascaded PID controller. In Electronics Symposium (IES), 2015 International (pp. 94-99). IEEE.

Bobby, G., Susanto, E., & Suratman, F. Y. (2015). Implementasi Robot Keseimbangan Beroda Dua Berbasis Mikrokontroler. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 3(2), 142.

Fahmizal, F., Arrofiq, M., & Mayub, A. (2017). Logika Fuzzy pada Robot Inverted Pendulum Beroda Dua. Jurnal Teknologi Informasi dan Ilmu Komputer, 4(4), 244-252.

Huang, J., Guan, Z. H., Matsuno, T., Fukuda, T., & Sekiyama, K. (2010). Sliding-mode velocity control of mobile-wheeled inverted-pendulum systems. IEEE Transactions on robotics, 26(4), 750-758.

Tewari, A. (2002). Modern control design. NY: John Wiley & sons, 283-308.

Zhou, K., Doyle, J. C., & Glover, K. (1996). Robust and optimal control (Vol. 40, p. 146). New Jersey: Prentice hall.




DOI: https://doi.org/10.26760/elkomika.v7i2.224

Refbacks

  • Saat ini tidak ada refbacks.


_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License