Compressive Sampling untuk Sinyal Beat Radar Cuaca via Discrete Cosine Transform (DCT)

RITA PURNAMASARI, ANDRIYAN BAYU SUKSMONO

Abstract


ABSTRAK

Compressive sampling (CS) merupakan metode baru yang memungkinkan proses pengambilan sampel dan kompresi dilakukan secara bersamaan sehingga dapat mempercepat waktu komputasi sekaligus memperkecil bandwidth saat dilewatkan pada media transmisi. Salah satu cara agar CS dapat bekerja secara optimal adalah jika sinyal yang akan diolah memiliki tingkat sparsitas yang tinggi. Pada makalah ini, mengusulkan algoritma Discrete Cosine Transform (DCT) sebagai metode transformasi sparsitas untuk sinyal beat radar cuaca IWarp. Sinyal beat menjadi sparse setelah direpresentasikan pada domain frekuensi, sehingga dapat mengambil sampelnya secara acak dan akhirnya mendapatkan sekumpulan sinyal sampel yang telah berukuran lebih kecil daripada sinyal beat radar awal. Pada penelitian ini menggunakan ℓ􀬵 -magic untuk melakukan rekonstruksi dari sinyal yang telah terkompresi tersebut. Simulasi numerik menunjukkan bahwa algoritma yang diusulkan berada pada performansi yang baik dengan rata-rata Peak Signal Noise to Ratio (PSNR) sebesar 15,17 dB.

Kata kunci: CS, radar cuaca, sparsitas, DCT, rekonstruksi ℓ􀬵

 

ABSTRACT

Compressive sampling (CS) is a new method that allows sampling and compression to be carried out simultaneously so that it can increase the computing time and reduce bandwidth while passed on the transmission media. One way for CS to work optimally is if the signal to be processed has a high sparsity level. In this paper we propose the Discrete Cosine Transform (DCT) algorithm as a sparsity transformation method for IWarp weather radar beat signals. The beat signal becomes sparse after being represented in the frequency domain, so this can randomly take samples and finally get a set of sample signals that are smaller than the initial radar beat signal. In this reasearch, use ℓ􀬵-magic to reconstruct the compressed signal. Numerical simulations show that the proposed algorithm is in good performance with an average Peak Signal Noise to Ratio (PSNR) of 15.17 dB

Keywords: CS, weather radar, sparsity, DCT, ℓ􀬵-reconstruction


Keywords


CS, radar cuaca, sparsitas, DCT, rekonstruksi ℓ􀬵

References


Baraniuk, R., & Steeghs, P. (2007). Compressive radar imaging. IEEE Radar Conference, (pp. 128–133).

Candès , E. J., & Wakin, M. B. (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2), 21-30.

Candès Justin, E. J., Romberg, K., & Tao, T. (2006). Stable Signal Recovery from Incomplete and Inaccurate Measurements. Communications on Pure and Applied Mathematics, 1207-1223.

Donoho, L. D. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), pp. 1289–1306.

Doviak, R. J., & Zrnic, S. D. (1993). Doppler radar and weather observation. Dover Publications, Inc.

Kawami, R., A Hirabayashi, N., Tanaka, M., Shibata, T., Ijiri, T., Shimamura, S., Ushio, T. (2016). 2-dimensional high-quality reconstruction of compressive measurements of phased array weather radar. 2016 Asia-Paci?c Signal and Information Processing Association Annual Summit and Conference (APSIPA), (pp. 1-7).

Kawami, R., Hirabayashi, A., Ijiri, T., Shimamura, S., Kikuchi, H., & Ushio, T. (2017). 3- Dimensional Compressive Sensing and High-Quality Recovery for Phased Array Weather Radar. 2017 International Conference On Sampling Theory And Applications (Sampta), (pp. 658-661).

Kawami, R., Kataoka, H., Kitahara, D., Hirabayashi, A., Ijiri, T., Shimamura, S., . . . Ushio, T. (2017). Fast High-Quality Three- imensional Reconstruction from Compressive Observation of Phased Array Weather Radar. Proceedings of APSIPA, (pp. 44-49).

Milinkovic , M., & Petric, D. (2018). Comparison between CS and JPEG in terms of image compression. 7th Mediterranean Conference on Embedded Computing MECO.

Mishra, K. V., Kruger, A., & Krajewski, W. F. (2014). Compressed sensing applied to weather radar. IEEE Geoscience and Remote Sensing Symposium, (pp. 1832–1835).

Nyquist. (1928). Certain topics in telegraph transmission theory. Transactions of the American Institute of Electrical Engineers, 47(42), 617-644.

Purnamasari, R., Suksmono, A. B., Edward, I. J., & Zakia, I. (2018). Recovery of Radar’s Beat Signal Based on Compressive Sampling.

Reyes, C., Hilaire, T., Paul, S., & Mecklenbr¨auker, H. F. (2010). Evaluation of the Root Mean Square Error Performance of the PAST-Consensus Algorithm. International ITG Workshop on Smart Antennas.

Sajjadieh, M. H., & Asif, A. (2017). Compressive sensing time reversal mimo radar: Joint direction and doppler frequency estimation. IEEE Signal Processing Letters, 22(9), 1283-1287.

Shannon, C. (1949). Communication in the presence of noise. Proceedings of the IRE, 37(1), 10-21.

Shimamura, S., Kikuchi, H., Matsuda, T., Kim, G., Yoshikawa, E., Nakamura, Y., & Ushio, T. (2016). Large-Volume Data Compression Using Compressed Sensing for Meteorological Radar. Electronics and Communications in Japan, 99(10), 704-710.

Strang, G. (2006). The discrete cosine transform. SIAM, 41, pp. 135–147. Suksmono, A. B. (2014). Improved compressive sampling sfcw radar by equipartition of energy sampling. International Journal on Electrical Engineering and Informatics (IJEEI), 6(3).




DOI: https://doi.org/10.26760/elkomika.v7i2.238

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License