Deteksi Sinyal : Overview Model Parametrik menggunakan Kriteria Neyman-Pearson
Abstract
ABSTRAK
Deteksi sinyal banyak diimplementasikan dalam sistem pengolahan sinyal yang sangat kompleks. Sebagai contoh digunakan pada sub sistem pengolahan sinyal radar pengintai yang berfungsi untuk deteksi dan pelacakan target. Salah satu implementasi terbaru dari deteksi sinyal adalah untuk fungsi spectrum sensing pada Cognitive Radio. Deteksi sinyal dapat didefinisikan sebagai binary hypothesis testing, yaitu memutuskan satu dari dua keadaan: hanya derau atau tidak ada sinyal (null hypothesis), dan ada sinyal (alternative hypothesis). Teori deteksi sinyal merupakan bidang yang cukup luas, sehingga paper ini fokus pada pendekatan parametrik dengan Teorema Neyman-Pearson. Kedua hypothesis dimodelkan dengan variabel acak dengan distribusi rapat kemungkinan yang sama tetapi mempunyai parameter yang berbeda. Ditunjukkan penurunan test statistic untuk dua skenario, yaitu distribusi dengan diketahui sebagian dan diketahui penuh. Bagian simulasi menunjukkan kinerja detektor sinyal secara analitis mempunyai hasil yang serupa dengan simulasi Monte Carlo.
Kata kunci: deteksi sinyal, Neyman-Pearson, hypothesis testing, spectrum sensing, radar.
Â
ABSTRACT
Signal detection has been used in many sophisticated signal processing systems, such as for signal processing in surveillance radar which is to detect and to track a radar target. Recently, signal detection is widely used for spectrum sensing in Cognitive Radio. Signal detection is a binary hypothesis testing problem which is to choose one out of two conditions, i.e., noise only or signal absence (null hypothesis), and signal presence (alternative hypothesis). Since signal detection theory is a wide area, this paper only focuses on parametric approach using Neyman-Pearson theorem. The two hypotheses are modeled by random variables having the same distribution but different parameters. The derivations of test statistics (detectors) are shown for two scenarios, i.e., partially known and perfectly known distributions. Analytical results and Monte Carlo simulations of the derived detectors show similar performances.
Keywords: signal detection, Neyman-Pearson, hypothesis testing, spectrum sensing, radar.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Axell, E., Leus, G., Larsson, E.G., & Poor, H.V. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Processing Magazine, 29(3), 101–116.
Garcia, R.L. (1994). Probability and Random Processes for Electrical Engineering. Addison-Wesley Publishing Company.
Gibson, J.D. & Melsa, J.L. (1996). Introduction to nonparametric detection with applications. New York: IEEE Press.
Hossain, E., Niyato, D., & Han, Z. (2009). Dynamic Spectrum Access and Management in Cognitive Radio Networks. Cambridge University Press.
Kassam, S.A. (1988).Signal detection in non-Gaussian noise. Springer-Verlag.
Kay, S.M. (1993). Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice Hall, Inc.
Kay, S.M. (1998). Fundamentals of Statistical Signal Processing: Detection Theory. Prentice Hall, Inc.
Poor, V.H. (1988). An introduction to signal detection and estimation. Springer-Verlag.
Richards, M.A (2014). Fundamentals of Radar Signal Processing. New York: McGraw Hill Education.
Serfling, R.J. (2009) Approximation theorems of mathematical statistics. John Wiley & Sons, Inc.
Suratman, F.Y., Chakhchoukh, Y., & Zoubir, A.M. (2010). Locally Optimum Detection in Heavy-Tailed Noise for Spectrum Sensing in Cognitive Radio. The 2nd International Workshop on Cognitive Information Processing (CIP), (pp. 134-139).
Suratman, F.Y. and Zoubir, A.M. (2013). Bootstrap Based Sequential Probability Ratio Tests. The IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (pp. 6352-6356).
Suratman, F.Y. & Zoubir, A.M. (2014). Multiple Testing for Sequential Probability Ratio Tests with Application to Multiband Spectrum Sensing, in The IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (pp. 3444-3448).
Wald, A. (1945). Sequential tests of statistical hypotheses. The Annals of Mathematcal Statistics, pp.117–186.
Varshney, P.K. (1997) Distributed detection and data fusion. Springer.
Zoubir, A.M. (2004). Bootstrap techniques for signal processing. Cambridge University Press.
DOI: https://doi.org/10.26760/elkomika.v7i1.14
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.