Identifikasi Suara Tangisan Bayi menggunakan Metode LPC dan Euclidean Distance
Sari
Kebanyakan orang tua masih jarang memiliki kemampuan mengartikan tangisan bayi. Bagi beberapa orang tua hal tersebut menjadi kendala ketika mengenali kebutuhan dari tangisan bayi. Oleh karena itu, pada penelitian ini telah diirancang sistem mengidentifikasi suara tangisan bayi dengan metode ektstraksi sinyal yaitu metode LPC (Linear Predictive Coding) dan pencocokan pola menggunakan algoritma Euclidean Distance. Data latih tangisan bayi menggunakan database suara Baby language-DBL, sementara data uji suara tangisan bayi diperoleh dari hasil observasi di poliklinik anak suatu rumah sakit. Proses diawali dengan mengektraksi file suara tangisan bayi dan disimpan ke dalam database sebagai data latih. Suara data uji diekstraksi kemudian dicocokkan dengan data latih menggunakan Euclidean Distance. Aplikasi dapat mengidentifikasi suara tangisan bayi dengan hasil pencocokan sebesar 76%.
Kata kunci: Tangisan Bayi, Linear Predictive Coding, Euclidean Distance, Dunstan Baby Language
Most parents still rarely have the ability to interpret the infant cries. Some parents become an obstacle when recognizing the needs of crying babies. Therefore, this research has designed the system to identify the sound of crying baby with method of signal extraction that is LPC (Linear Predictive Coding) method and pattern matching using Euclidean Distance algorithm. Training dataset of infant cries using the Dunstan Baby language database-DBL, while testing dataset of infant cries were obtained from observations in the child polyclinic of a hospital. The process begins by extracting training dataset from the sound of infant cries files and stored in the database. The extraction feature of testing dataset is matched with the training data using the Euclidean Distance. The system can identify the sound of crying babies with matching results of 76%.
Keywords: Infant Cries, Newborn Cries, Linear Predictive Coding, Euclidean Distance, Dunstan Baby Language
Teks Lengkap:
PDFReferensi
Ariyadi, R., Purnomo, M. H., Ramadijanti, N., & Dewantara, B. S. (2016). Pengenalan rasa lapar Melalui Suara Tangisan bayi Umur 0-9 Bulan dengan Menggunakan Neural Network. Diambil kembali dari Researchgate.net: https://www.researchgate.net/publication/277150925_Pengenalan_Rasa_Lapar_Melalui_Suara_Tangis_Bayi_Umur_0-9_Bulan_Dengan_Menggunakan_Neural_Network_Sub_Judul_Penapisan_Dengan_Transformasi_Wavelet_Kontinyu
Bhagatpatil, V., & Sardar, V. (2014). An Automatic Infant’s Cry Detection Using Linear. International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014, 1379-1383.
Brătilă, E., Comandasu, D., Diaconescu, Ş.-S., Rusu, M. S., & Sardescu, G. (2015). Acquisition methodology of the newborn’s crying. Diambil kembali dari Neonatologie: http://revistaginecologia.ro/system/revista/11/52-55.pdf
Deng, L., & O'Shaughnessy, D. (2003). Speech Processing A Dynamic and Optimization-Oriented Approach. New York: Marcel Dekker Inc.
Deza, Elena; Deza, Michele Marie. (2009). Encyclopedia of Distances. Berlin: Springer.
Dunstan, P. (2006). Open Up and Discover Your Baby's Language. Diambil kembali dari Babytaal.nl: http://www.babytaal.nl/media/PDF/ComprehensiveBooklet(2).pdf.
Hariharan, M., Sindhu, R., & Yaacob, S. (2012). Normal and Hypoacoustic Infant Cry Signal Classification Using Time -Frequency Analysis and General Regression Neural Network. Computer Methods and Programs in Biomedcine vol.108 No.2, 559-569.
Limantoro, W. S., Fatichah, C., & Yuhana, U. L. (2016). Rancang Bangun Aplikasi Pendeteksian Suara Tangisan Bayi. Jurnal Teknik ITS vol 5 No.2.
Moeckel, E., & Mitha, N. (2008). Textbook of Pediatric Osteopathy. Philadelphia: Elsevier Limited.
Permana, I., & Negara, B. S. (2011). Identifikasi Pembicara dengan Menggunakan Mel Frequency Cepstral Coefficient (MFCC) dan Self Organizing Map (SOM). SNTIKI III, (hal. 209-216).
Poel, M., & Ekkel, T. (2006). Analyzing Infant Cries Using a Committee of Neural Networks in order to Detect Hypoxia Related Disorder. International Journal on Artificial Intelligence Tools (IJAIT) Vol 15, No.3, 397-410.
Rabiner, Lawrence, & Juang, B. H. (1993). Fundamentals of Speech Recognition. New Jersey: Prentice Hall.
Rachman, S. (2011). VISUALISASI PENGENALAN UCAPAN VOKAL BAHASA INDONESIA. Diambil kembali dari Diponegoro University Institutional Repository: http://eprints.undip.ac.id/25763/
Renanti, m. D., Buono, A., & Kusuma, W. A. (2013). Identification by using Codebook as Feature Matching and MFCC as Feature Extraction. Journal of Theoretical and Applied Information Technology.
Smith, A. (2013). Decoding baby talk. Diambil kembali pada tanggal 20 Desember 2017 dari dunstanbaby: http://www.dunstanbaby.com/decoding-baby-talk/
Srijiranon, K., & Eiamkanitchat, N. (2014). Application of Neuro-Fuzy Approaches to Recognition and Classification of Infant Cry. TENCON 2014-IEEE Region 10 Conference. Bangkok: TENCON.
Thiang, & Saputra, H. (2005). Sistem Pengenalan Kata dengan Menggunakan Linear Predictive Coding. Jurusan Teknik Elektro, Universitas Kristen Petra, Vol 5, No.2, 19-24.
DOI: https://doi.org/10.26760/elkomika.v6i1.153
Refbacks
- Saat ini tidak ada refbacks.
_______________________________________________________________________________________________________________________
ISSN (cetak) : 2338-8323 | ISSN (elektronik) : 2459-9638
diterbitkan oleh :
Teknik Elektro Institut Teknologi Nasional Bandung
Alamat : Gedung 20 Jl. PHH. Mustofa 23 Bandung 40124
Kontak : Tel. 7272215 (ext. 206) Fax. 7202892
Surat Elektronik : jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Statistik Pengunjung
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.