Kontrol Kecepatan Motor Induksi menggunakan Algoritma Backpropagation Neural Network
Abstract
ABSTRAK
Banyak strategi kontrol berbasis kecerdasan buatan telah diusulkan dalam penelitian seperti Fuzzy Logic dan Artificial Neural Network (ANN). Tujuan dari penelitian ini adalah untuk mendesain sebuah kontrol agar kecepatan motor induksi dapat diatur sesuai kebutuhan serta membandingkan kinerja motor induksi tanpa kontrol dan dengan kontrol. Dalam penelitian ini diusulkan sebuah metode artificial neural network untuk mengontrol kecepatan motor induksi tiga fasa. Kecepatan referensi motor diatur pada kecepatan 140 rad/s, 150 rad/s, dan 130 rad/s. Perubahan kecepatan diatur pada setiap interval 0.3 detik dan waktu simulasi maksimum adalah 0,9 detik. Kasus 1 tanpa kontrol, menunjukkan respon torka dan kecepatan dari motor induksi tiga fasa tanpa kontrol. Meskipun kecepatan motor induksi tiga fasa diatur berubah pada setiap 0,3 detik tidak akan mempengaruhi torka. Selain itu, motor induksi tiga fasa tanpa kontrol memiliki kinerja yang buruk dikarenakan kecepatan motor induksi tidak dapat diatur sesuai dengan kebutuhan. Kasus 2 dengan control backpropagation neural network, meskipun kecepatan motor induksi tiga fasa berubah pada setiap 0.3 detik tidak akan mempengaruhi torsi. Selain itu, kontrol backpropagation neural network memiliki kinerja yang baik dikarenakan kecepatan motor induksi dapat diatur sesuai dengan kebutuhan.
Kata kunci: Backpropagation Neural Network (BPNN), NN Training, NN Testing, Motor.
ABSTRACT
Many artificial intelligence-based control strategies have been proposed in research such as Fuzzy Logic and Artificial Neural Network (ANN). The purpose of this research was design a control for the induction motor speed that could be adjusted as needed and compare the performance of induction motor without control and with control. In this research, it was proposed an artificial neural network method to control the speed of three-phase induction motors. The reference speed of motor was set at the rate of 140 rad / s, 150 rad / s, and 130 rad / s. The speed change was set at every 0.3 second interval and the maximum simulation time was 0.9 seconds. Case 1, without control, shows the torque response and velocity of three-phase induction motor without control. Although the speed of three phase induction motor was set to change at every 0.3 seconds, it would not affect the torque. The uncontrolled three-phase induction motors had poor performance due to induction motor speeds could not be adjusted as needed. Case 2 with backpropagation neural network control, although the speed of three phase induction motor changing at every 0.3 seconds would not affect the torque. In addition, the backpropagation neural network control had a good performance because the speed of induction motor could be adjusted as needed.
Keywords: Backpropagation Neural Network (BPNN), NN Training, NN Testing, Motor
Full Text:
PDF (Bahasa Indonesia)References
Waluyo, W., Fitriansyah, A., & Syahrial, S. (2013). Analisis Penalaan Kontrol PID pada Simulasi Kendali Kecepatan Putaran Motor DC Berbeban menggunakan Metode Heuristik. Jurnal Elkomika, 1(2).
P. Brandstetter. (2014). Sensorless Control of DC Drive Using Artificial Neural Network, Journal of Applied Sciences, 11(10).
Wudai Liao. (2014). Optimization of PID Control for DC Motor Based On Artificial Bee Colony Algorithm.
D. Chen, K. Fang, and Q. Chen. (2007). Application of genetic algorithm in PID parameters optimization. Microcomputer Information, 23(3): 35-36.
H. He and F. Qian. (2014). The PID parameter tuning based on immune evolutionary algorithm, Microcomputer Information, 27(5): 1174-1176.
Nitish Katal. (2012). Optimal Tuning of PID Controller for DC Motor using Bio-Inspired Algorithms. International Journal of Computer Applications.
Bharat Bhushan. (2011). Adaptive control of DC motor using bacterial foraging algorithm. Applied Soft Computing sciencedirectâ€.
Ashu Ahuja. (2014). Design of fractional order PID controller for DC motor using evolutionary optimization techniques. WSEAS Transactions on Systems and Control.
Anant Oonsivilai. (2008). Optimum PID Controller tuning for AVR System using Adaptive Tabu Search, 12th WSEAS International Conference on COMPUTERS, Heraklion, Greece, July 23-25.
Umesh Kumar Bansal. (2013). Speed Control of DC Motor Using Fuzzy PID Controller, Advance in Electronic and Electric Engineering.
K. Premkumar. (2015). Fuzzy PID supervised online ANFIS based speed controller for brushless dc motor. Sciencedirect. Neurocomputing.
M.R.Djalal, D. Ajiatmo, A. Imran, I. Robandi. (2015). Desain Optimal Kontroler PID Motor DC Menggunakan Cuckoo Search Algorithm, Seminar Nasional Teknologi Informasi dan Aplikasinya (SENTIA) Politeknik Negeri Malang.
D.Lastomo, M.R.Djalal, Widodo, I.Robandi. (2015). Optimization of PID Controller Design for DC Motor Based on Flower Pollination Algorithm, The 2015 International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM 2015).
DOI: https://doi.org/10.26760/elkomika.v5i2.138
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.