Autonomous Navigation onto Autodocking Drone System using Computer Vision

LISA KRISTIANA, KEINDRA BAGAS MAULANA, SHAFIRA KURNIA FASYA, MUHAMMAD ZUFAR DAFY, MUKTIADI AKHMAD JANUAR

Abstract


Autodocking is a sophisticated technology that allows drones to land automatically at a predetermined docking station. Computer vision plays an important role in the drone autodocking system, allowing the drone to "see" the intended object. The problem with drone control is the precision of determining and placing objects, in this case docking, where there is still a difference or error between the desired docking set point. The solution proposed in this article is to use the PID Controller (Proportional-Integral-Derivative Controller) algorithm. By using a PID controller, the drone can regulate its movements more precisely, maintain stability, and ensure proper landing. The results achieved using this approach, reached a 90% success rate (precision) with control of several environmental parameters. first page. The abstract contains a summary of backgrounds, methods, and research results, with the maximum number of characters being 150.


Keywords


Proportional-Integral-Derivative Controller; Autonomous Drone; Computer Vision; Autodocking System

Full Text:

PDF

References


Wardoyo, A. S. (2022). An Analysis of the Performance of Autonomous Navigation on an Ardupilot-Controlled Rover.

Sampurno, B., Putra, I. F., Mashuri, Widiyono, E., Mursid, M., & Suhariyanto. (2023). GPS Navigation System on Autonomous Ship as an Effort to Increase Fish Catch for Fishermen in Pamekasan, Indonesia.

Khosyi’in, M., Prasetyowati, S. A. D., Suprapto, B. Y., & Nawawi, Z. (2022). The Impact of Telemetry Received Signal Strength of IMU/GNSS Data Transmission on Autonomous Vehicle Navigation.

Hidayath, M. I. T., Wicaksono, M. F. A., & Pohan, G. A. (2022). Analisa Pengaruh Manuver dan Kecepatan pada Pesawat Tanpa Awak Tipe Fixed Wing dengan Variasi Airfoil Berbasis Ardupilot.

Babgei, A. F., & Suryoatmojo, H. (2020). Building an Unmanned Aerial Vehicle for Humanitarian Aid Delivery.

Priambodo, A. S., Arifin, F., Nasuha, A., & Winursito, A. (2021). Face Tracking for Flying Robot Quadcopter Based on Haar Cascade Classifier and PID Controller.

Maray, A. H., Ahmed, K. I., Habaebi, M. H., & Islam, M. R. (2023). Design and Implementation of Low-Cost Vein-Viewer Detection Using Near-Infrared Imaging.

Darussalam, A. G., Aprilia, A. R., Hidayat, R., Wibisono, A., & Suhendri. (2021). Pemanfaatan RFID, Loadcell, dan Sensor Infrared untuk Miniatur Penukaran Sampah Botol Plastik.

Prasetio, Y. R., & Satria, B. (2022). Sistem Keamanan Rumah Menggunakan Sensor Passive Infrared Receiver dan SMS Gateway Berbasis Arduino.

Poerbaningtyas, E., Dradjat, R. S., Endharti, A. T., Sakti, S. P., Widjajanto, E., Yueniwati, Y., & Purnomo, M. H. (2020). Optimizing Infrared Camera Resolution for Small Object Detection Using Subpixel Rendering and PIFS in Multiresolution Image Analysis.

Kristiana, L., Idris, N. A., Manurung, A. O., Darlis, A. R., Dewi, I. A., & Lidyawati, L. (2021, October). Obstacle awareness system of an indoor UAV with multi-sensor fusion algorithm. In 2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering (pp. 32-37). IEEE..

Kristiana, L., & Aditya, H. D. (2020). The Viability of Leap Motion Implementation in Controlling Drone using K-Nearest Neighbor Algorithm. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 8(3), 683.

Dohi, R., & Higashi, Y. (2024). Study on Improvement of Docking Mechanism for Docking–Undocking Drones in the Air and Docking Control Using an Onboard Camera. Journal of Robotics and Mechatronics, 36(5), 1026-1036.

Volden., Stahl, A., & Fossen, T. I. (2022). Vision-based positioning system for auto-docking of unmanned surface vehicles (USVs). International Journal of Intelligent Robotics and Applications, 6(1), 86-103.

Leite, P. N. B. (2019). A self-guided docking architecture for autonomous surface vehicles (Master's thesis, Universidade do Porto (Portugal)).

Gong, L., Wu, Y., Gao, B., Sun, Y., Le, X., & Liu, C. (2022). Real-time dynamic planning and tracking control of auto-docking for efficient wireless charging. IEEE Transactions on Intelligent Vehicles, 8(3), 2123-2134.




DOI: https://doi.org/10.26760/elkomika.v13i1.70

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License