Evaluating a Preprocessing Pipeline for Fetal Phonocardiography Using FIR Filtering

SAHI RAFAEL DAMARDHI, IRMALIA SURYANI FARADISA, SOTYOHADI SOTYOHADI

Abstract


This study evaluates the effectiveness of a preprocessing pipeline consisting of resampling, normalization, and Finite Impulse Response (FIR) filtering to improve signal consistency for further signal analyses such as feature extraction and classification. Resampling standardizes the sampling rate to 16 kHz, ensuring uniform temporal resolution. Normalization adjusts amplitude across recordings, yielding a mean of 0,0015 and a standard deviation 0,0462. FIR filtering reduces noise, eliminating 77,69% of signal energy above 200 Hz while retaining 29,65% of the main signal. Pipeline evaluation shows a Signal-to-Noise Ratio (SNR) of -1,88 dB, indicating a significant power reduction, but normalization ensures amplitude stability. These results demonstrate that this preprocessing combination effectively reduces noise, although balancing noise reduction and signal preservation remains challenging.


Keywords


Preprocessing; Fetal Phonocardiography; Min-max Normalization; Finite Impulse Response; Signal to Noise Ratio

Full Text:

PDF

References


Ballas, Aristotelis, Papapanagiotou, V., Delopoulos, A., & Diou, C. (2022). Listen2YourHeart: A Self-Supervised Approach for Detecting Murmur in Heart-Beat Sounds. 2022 Computing in Cardiology Conference. https://doi.org/10.22489/CinC.2022.298

Ben Hamza, M. F. A., & Sjarif, N. N. A. (2025). Comparative Analysis of Feature Selection Based on Metaheuristic Methods for Human Heart Sounds Classification Using PCG Signal. International Journal of Advanced Computer Science and Applications (IJACSA), 16(1). https://dx.doi.org/10.14569/IJACSA.2025.0160175

Bruna, J., & Mallat, S. (2013). Invariant Scattering Convolution Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1872–1886. https://doi.org/10.1109/TPAMI.2012.230

Chen, W.-K. (Ed.). (2009). Passive, active, and digital filters (3. ed). CRC Press.

Chetlur Adithya, P., Sankar, R., Moreno, W. A., & Hart, S. (2017). Trends in fetal monitoring through phonocardiography: Challenges and future directions. Biomedical Signal Processing and Control, 33, 289–305. https://doi.org/10.1016/j.bspc.2016.11.007

Faradisa, I. S., Anggriawan, D. O., Sardjono, T. A., & Purnomo, M. H. (2016). Identification of phonocardiogram signal based on STFT and Marquart Lavenberg Backpropagation. 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA), 25–30. https://doi.org/10.1109/ISITIA.2016.7828628

Faradisa, I. S., Putra, O. V., Sardjono, T. A., & Purnomo, M. H. (2023). Arrhythmia Feotus Heartbeat Detection Using Optimized Neural Network Based on Phonocardiograph Ensemble Feature and Principal Component Analysis. International Journal of Intelligent Engineering and Systems, 16(1). https://doi.org/10.22266/ijies2023.0228.48

Farahi, M., Casals, A., Sarrafzadeh, O., Zamani, Y., Ahmadi, H., Behbood, N., & Habibian, H. (2021). Beat-to-Beat Fetal Heart Rate Analysis Using Portable Medical Device and Wavelet Transformation Technique. https://doi.org/10.48550/ARXIV.2103.01014

He, Y., Li, W., Zhang, W., Zhang, S., Pi, X., & Liu, H. (2021). Research on Segmentation and Classification of Heart Sound Signals Based on Deep Learning. Applied Sciences, 11(2), 651. https://doi.org/10.3390/app11020651

Johansson, H., & Gustafsso, O. (2013). Two-Rate Based Structures for Computationally Efficient Wide- Band FIR Systems. In F. P. Garca Mrquez (Ed.), Digital Filters and Signal Processing. InTech. https://doi.org/10.5772/52198

Kahankova, R., Mikolasova, M., Jaros, R., Barnova, K., Ladrova, M., & Martinek, R. (2023). A Review of Recent Advances and Future Developments in Fetal Phonocardiography. IEEE Reviews in Biomedical Engineering, 16, 653–671. https://doi.org/10.1109/RBME.2022.3179633

Martinek, R., Barnova, K., Jaros, R., Kahankova, R., Kupka, T., Jezewski, M., Czabanski, R., Matonia, A., Jezewski, J., & Horoba, K. (2020). Passive Fetal Monitoring by Advanced Signal Processing Methods in Fetal Phonocardiography. IEEE Access, 8, 221942–221962. https://doi.org/10.1109/ACCESS.2020.3043496

Mokeev, A. (2013). Direct Methods for Frequency Filter Performance Analysis. In F. P. Garca Mrquez (Ed.), Digital Filters and Signal Processing. InTech. https://doi.org/10.5772/52192

Sameni, R., & Samieinasab, M. (n.d.). Shiraz University Fetal Heart Sounds Database (Version 1.0.1) [Dataset]. PhysioNet. https://doi.org/10.13026/42EG-8E59

Samieinasab, M., & Sameni, R. (2015). Fetal phonocardiogram extraction using single channel blind source separation. 2015 23rd Iranian Conference on Electrical Engineering, 78–83. https://doi.org/10.1109/IranianCEE.2015.7146186

Sbrollini, A., Strazza, A., Caragiuli, M., Mozzoni, C., Tomassini, S., Agostinelli, A., Morettini, M., Fioretti, S., Di Nardo, F., & Burattini, L. (2017, September 14). Fetal Phonocardiogram Denoising by Wavelet Transformation: Robustness to Noise. 2017 Computing in Cardiology Conference. https://doi.org/10.22489/CinC.2017.331-075

Stergiopoulos, S. (Ed.). (2000). Advanced signal processing handbook: Theory and implementation for radar, sonar, and medical imaging real time systems. CRC Press.

Suryani Faradisa, I., Ananda, A., Arief Sardjono, T., & Hery Purnomo, M. (2020). Denoising of Fetal Phonocardiogram Signal by Wavelet Transformation. E3S Web of Conferences, 188, 00013. https://doi.org/10.1051/e3sconf/202018800013

Tang, H., Li, T., Qiu, T., & Park, Y. (2016). Fetal Heart Rate Monitoring from Phonocardiograph Signal Using Repetition Frequency of Heart Sounds. Journal of Electrical and Computer Engineering, 2016, 1–6. https://doi.org/10.1155/2016/2404267

Tomassini, S., Strazza, A., Sbrollini, A., Marcantoni, I., Morettini, M., Fioretti, S., Burattini, L., 1 Cardiovascular Bioengineering Lab, Department of Information Engineering, Universita Politecnica delle Marche, Ancona, Italy, & 2 Laboratorio di Bioingegneria, Department of Information Engineering, Universita Politecnica delle Marche, Ancona, Italy. (2019). Wavelet filtering of fetal phonocardiography: A comparative analysis. Mathematical Biosciences and Engineering, 16(5), 6034–6046. https://doi.org/10.3934/mbe.2019302

Vetterli, M., Kovacevic, J., & Goyal, V. K. (2014). Foundations of signal processing. Cambridge University Press.

Zhang, L., Lim, C. P., Yu, Y., & Jiang, M. (2022). Sound classification using evolving ensemble models and Particle Swarm Optimization. Applied Soft Computing, 116, 108322. https://doi.org/10.1016/j.asoc.2021.108322




DOI: https://doi.org/10.26760/elkomika.v13i2.155

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License