FedFA: Firefly Algorithm for Communication Cost Optimization in Federated Learning
Abstract
Federated Learning is a promising communication model to address data security and privacy issues. Each client device engages in a collaborative machine learning model, eliminating the need to send all client data to the server. However, the main obstacles to applying FL to wireless network communication are limited bandwidth and unstable network conditions. Therefore, this research proposes a new FedFA approach integrating the Firefly algorithm to optimize weight initialization and minimize communication costs. The basic principle of FedFA involves parameters in the Firefly algorithm to select the best weight of each client to be trained on the server. Based on the test results, the proposed algorithm produces an accuracy improvement of 12.84% compared to FedAvg. The FedFA model is also more resilient to unstable communication, as seen from the less significant decrease in accuracy compared to the FedAvg algorithm.
Keywords
Full Text:
PDFReferences
Abasi, A. K., Aloqaily, M., & Guizani, M. (2022). Grey Wolf Optimizer for Reducing Communication Cost of Federated Learning. Proceedings - IEEE Global Communications Conference, GLOBECOM, (pp. 1049–1054). https://doi.org/10.1109/GLOBECOM48099.2022.10001681
Alex Krizhevsky, Vinod Nair, & Geoffrey Hinton. (n.d.). The CIFAR-10 Dataset. Https://Www.Cs.Toronto.Edu/~kriz/Cifar.Html.
Brendan McMahan Eider Moore Daniel Ramage Seth Hampson Blaise AgüeraAg, H., & Arcas, A. (2017). Communication-Efficient Learning of Deep Networks from Decentralized Data.
Cisco. (2020). Cisco Annual Internet Report (2018-2023). White Paper Cisco Public, 2020(3), 4–4. https://doi.org/10.1016/s1361-3723(20)30026-9
Elakkiya E, & Selvakumar S. (2019). Initial Weights Optimization using Enhanced Step Size Firefly Algorithm for Feed Forward Neural Network applied to Spam Detection. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON) : Proceedings : Technology, Knowledge, and Society, 1362.
Elfaki, M. A., Alshahrani, H. M., Mahmood, K., Alabdan, R., Alymani, M., Alshahrani, H., Motwakel, A., & Alneil, A. A. (2023). Metaheuristics Algorithm-Based Minimization of Communication Costs in Federated Learning. IEEE Access, 11, 81310–81317. https://doi.org/10.1109/ACCESS.2023.3300221
Konecny, J., McMahan, H. B., Yu, F. X., Richtarik, P., Suresh, A. T., & Bacon, D. (2016). Federated Learning: Strategies for Improving Communication Efficiency. http://arxiv.org/abs/1610.05492
Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Processing Magazine, 37(3), 50–60. https://doi.org/10.1109/MSP.2020.2975749
Lu, Y., Huang, X., Zhang, K., Maharjan, S., & Zhang, Y. (2021). Blockchain and Federated Learning for 5G beyond. IEEE Network, 35(1), 219–225. https://doi.org/10.1109/MNET.011.1900598
Nguyen, D. C., Ding, M., Pathirana, P. N., Seneviratne, A., Li, J., & Poor, H. V. (2021). Federated Learning for Internet of Things: A Comprehensive Survey. IEEE Communications Surveys & Tutorials, 23(3).
https://doi.org/10.1109/COMST.2021.3075439
Niknam, S., Dhillon, H. S., & Reed, J. H. (2020). Federated Learning for Wireless Communications: Motivation, Opportunities, and Challenges. IEEE Communications Magazine, 58(6), 46–51. https://doi.org/10.1109/MCOM.001.1900461
Park, S., Suh, Y., & Lee, J. (2021). FedPSO: Federated learning using particle swarm optimization to reduce communication costs. Sensors (Switzerland), 21(2), 1–13. https://doi.org/10.3390/s21020600
Qin, Z., Li, G. Y., & Ye, H. (2021). Federated Learning and Wireless Communications. IEEE Wireless Communications, 28(5), 134–140. https://doi.org/10.1109/MWC.011.2000501
Yang, X. S., & He, X. (2013). Firefly algorithm: recent advances and applications. International Journal of Swarm Intelligence, 1(1), 36. https://doi.org/10.1504/ijsi.2013.055801
Zhang, T., Gao, L., He, C., Zhang, M., Krishnamachari, B., & Avestimehr, A. S. (2022). Federated Learning for the Internet of Things: Applications, Challenges, and Opportunities. IEEE Internet of Things Magazine, 5(1), 24–29. https://doi.org/10.1109/iotm.004.2100182
Zhu, L., Liu, Z., & Han, S. (2019). Deep Leakage from Gradients. Advances in Neural Information Processing Systems 32 (NeurIPS 2019). http://arxiv.org/abs/1906.08935
DOI: https://doi.org/10.26760/elkomika.v13i2.130
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.