Peningkatan Persentase Lebar Pita Antena 5G Substrate Integrated Waveguide dengan Slot Dumbbell

DIAN WIDI ASTUTI, SRI ARTHA TOGATOROP, MUSLIM MUSLIM, YUS NATALI

Sari


ABSTRAK

Antena Substrate Integrated Waveguide (SIW) konvensional memiliki lebar pita impedansi yang sempit. Penelitian ini mengusulkan perbaikan lebar pita impedansi antena SIW dengan mempergunakan slot dumbbell elips. Penempatan slot dumbbell elips menyebabkan bergabungnya dua mode TE SIW yang berdekatan. Gabungan dua mode TE SIW tersebut menyebabkan impedansi lebar pita menjadi lebih lebar dari sebelumnya. Hasil pengukuran lebar pita impedansi dari antena yang diusulkan memperlihatkan hasil yang sama persis dengan hasil simulasi yaitu sebesar 110 MHz pada rentang frekuensi 3,42 – 3,53 GHz. Desain frekuensi dari antena ini sesuai dengan frekuensi 5G yang diterapkan di Indonesia.

Kata kunci: peningkatan persentase lebar pita, antena substrate integrate waveguide, slot dumbbell elips, dua frekuensi resonansi


ABSTRACT

The conventional Substrate Integrated Waveguide (SIW) antennas often exhibit a narrow impedance bandwidth. This research proposes an improvement in the impedance bandwidth of SIW antennas by utilizing dumbbell ellipsoidal slots. The placement of dumbbell ellipsoidal slots results in the coupling of two adjacent TE modes in the SIW. The combination of these two TE modes leads to a broader impedance bandwidth compared to the conventional design. The measured impedance bandwidth of the proposed antenna shows results consistent with simulation, specifically at 110 MHz within the frequency range of 3.42 to 3.53 GHz. This design frequency aligns with the 5G frequency range implemented in Indonesia.

Keywords: bandwidth enhancement, substrate integrated waveguide antenna, dumbbell ellipsoidal slots, dual frequencies resonance


Kata Kunci


peningkatan prosentase lebar pita; antena substrate integrate waveguide; slot dumbbell ellips; dua frekuensi resonansi

Teks Lengkap:

PDF

Referensi


Aqlan, B., Vettikalladi, H., & Alkanhal, M. A. S. (2016). High Gain SIW-Based Antenna with Superstrate for Automotive Radar Applications. In 2016 Loughborough Antennas & Propagation Conference (LAPC) (pp. 1–5).

Astuti, D. W., Fadilah, R., Muslim, Rusdiyanto, D., Alam, S., & Wahyu, Y. (2022). Bandwidth Enhancement of Bow-tie Microstrip Patch Antenna Using Defected Ground Structure for 5G. Journal of Communications, 17(12), 995–1002. https://doi.org/10.12720/jcm.17.12.995-1002

Astuti, D. W., & Rahardjo, E. T. (2018a). Size Reduction of Cavity Backed Slot Antenna using Half Mode Substrate Integrated Waveguide Structure. 4th International Conference on Nano Electronics Research and Education: Toward Advanced Imaging Science Creation, ICNERE 2018, 1–4. https://doi.org/10.1109/ICNERE.2018.8642564

Astuti, D. W., & Rahardjo, E. T. (2018b). Size Reduction of Substrate Integrated Waveguide Cavity Backed U-Slot Antenna. In 2018 IEEE Indian Conference on Antennas and Propogation (InCAP) (pp. 1–4). IEEE. https://doi.org/10.1109/INCAP.2018.8770702

Astuti, D. W., Rivayanto, R., Muslim, M., Simanjuntak, I., Firmansyah, T., Astuti, D. A., & Natali, Y. (2023). Bandwidth Enhancement for Half Mode Substrate Integrated Waveguide Antenna using Defected Ground Structures. International Journal of Electronics and Telecommunications, 69(3), 449–454. https://doi.org/10.24425/ijet.2023.144382

Astuti, D. W., Wahyu, Y., Zulkifli, F. Y., & Rahardjo, E. T. (2023). Hybrid HMSIW Cavity Antenna with a Half Pentagon Ring Slot for Bandwidth Enhancement. IEEE Access, 11(February), 18417–18426. https://doi.org/10.1109/ACCESS.2023.3247604

Astuti, D. W., Zulkifli, F. Y., & Rahardjo, E. T. (2019). Bandwidth Enhancement of Substrate Integrated Waveguide Cavity Antenna using T-Backed Slot. In IEEE Conference on Antenna Measurements & Applications (CAMA) (pp. 251–254). https://doi.org/10.1109/cama47423.2019.8959656

Bozzi, M., Perregrini, L., Wu, K., & Arcioni, P. (2009). Current and Future Research Trends in Substrate Integrated Waveguide Technology. Radioengineering, 18(2), 201–209.

Cai, S., Liu, J., & Long, Y. (2020). Investigation of SIW Cavity-Backed Slot and Patch Antennas with Conical Radiation Patterns. IEEE Transactions on Antennas and Propagation, 68(8), 5978–5988. https://doi.org/10.1109/TAP.2020.2990312

Cassivi, Y., Perregrini, L., Arcioni, P., Bressan, M., Wu, K., & Conciauro, G. (2002). Dispersion Characteristics of Substrate Integrated Rectangular Waveguide. IEEE Microwave and Wireless Components Letters, 12(9), 333–335. https://doi.org/10.1109/LMWC.2002.803188

Chaturvedi, D., & Kumar, A. (2024). A QMSIW Cavity-Backed Self-Diplexing Antenna With Tunable Resonant Frequency Using. IEEE Antennas and Wireless Propagation Letters, 23(1), 259–263. https://doi.org/10.1109/LAWP.2023.3323008

Cheng, T., Jiang, W., Gong, S., & Yu, Y. (2019). Broadband SIW Cavity-Backed Modified Dumbbell-Shaped Slot Antenna. IEEE Antennas and Wireless Propagation Letters, 18(5), 936–940. https://doi.org/10.1109/LAWP.2019.2906119

Dash, S. K. K., Cheng, Q. S., Barik, R. K., Pradhan, N. C., & Subramanian, K. S. (2020). A Compact Triple-Fed High-Isolation SIW-Based Self-Triplexing Antenna. IEEE Antennas and Wireless Propagation Letters, 19(5), 766–770. https://doi.org/10.1109/LAWP.2020.2979488

Deslandes, D., & Wu, K. (2006). Accurate Modeling, Wave Mechanisms, and Design Considerations of a Substrate Integrated Waveguide. IEEE Transactions on Microwave Theory and Techniques, 54(6), 2516–2526. https://doi.org/10.1109/TMTT.2006.875807

Djerafi, T., Doghri, A., & Wu, K. (2015). Handbook of antenna technologies. Handbook of Antenna Technologies (Vol. ). https://doi.org/10.1007/978-981-4560-44-3

Hao, Q., Zheng, S., & Lu, K. (2024). An SIW Horn Antenna With Flat-Top Beam for Millimeter-Wave Applications. IEEE Antennas and Wireless Propagation Letters, 23(2), 608–612. https://doi.org/10.1109/LAWP.2023.3330931

Iqbal, A., Al-Hasan, M., Mabrouk, I. Ben, & Nedil, M. (2021). Compact SIW-Based Self-Quadruplexing Antenna for Wearable Transceivers. IEEE Antennas and Wireless Propagation Letters, 20(1), 118–122. https://doi.org/10.1109/LAWP.2020.3043258

Iqbal, A., Tiang, J. J., Lee, C. K., & Mallat, N. K. (2021). SIW Cavity Backed Self-Diplexing Tunable Antenna. IEEE Transactions on Antennas and Propagation, 69(8), 5021–5025. https://doi.org/10.1109/TAP.2021.3060024

Iqbal, A., Tiang, J. J., Wong, S. K., Wong, S. W., & Mallat, N. K. (2021). SIW Cavity-Backed Self-Quadruplexing Antenna for Compact RF Front Ends. IEEE Antennas and Wireless Propagation Letters, 20(4), 562–566.

Ji, Z., Sun, G., & Wong, H. (2022). A Wideband Circularly Polarized Complementary Antenna for Millimeter - wave Applications. IEEE Transaction on Antennas and Propagation, Februari(early access), 1–10. https://doi.org/10.1109/TAP.2021.3083782

Kim, D. Y., Lee, J. W., Lee, T. K., & Cho, C. S. (2011). Design of SIW cavity-backed circularpolarized antennas using two different feeding transitions. IEEE Transactions on Antennas and Propagation, 59(4), 1398–1403. https://doi.org/10.1109/TAP.2011.2109675

Lajevardi, M. E., & Kamyab, M. (2017). Ultraminiaturized Metamaterial-Inspired SIW Textile Antenna for Off-Body Applications. IEEE Antennas and Wireless Propagation Letters, 16, 3155–3158. https://doi.org/10.1109/LAWP.2017.2766201

Li, L., Zhang, C., Shao, Y., & Luo, J. (2021). A SIW-fed Cross-dipole Antenna with Broadband Circular Polarization for MMW Applications. IEEE Transaction on Antennas and Propagation, December(Early Access). https://doi.org/10.1109/TAP.2021.3137268

Li, L., Zhang, C., Shao, Y., Yin, J., & Luo, J. (2022). A SIW-Fed Double-Helix Antenna With Broadband Circular Polarization for MMW Applications. IEEE Antennas and Wireless Propagation Letters, 21(2), 361–365.

Luo, G. Q., Hu, Z. F., Dong, L. X., & Sun, L. L. (2008). Planar Slot Antenna Backed by Substrate Integrated Waveguide Cavity. IEEE Antennas and Wireless Propagation Letters, 7, 236–239. https://doi.org/10.1109/LAWP.2008.923023

Luo, G. Q., Hu, Z. F., Li, W. J., Zhang, X. H., Sun, L. L., & Zheng, J. F. (2012). Bandwidth-Enhanced Low-Profile Cavity-Backed Slot Antenna by Using Hybrid SIW Cavity Modes. IEEE Transaction on Antennas and Propagation, 60(4), 1698–1704.

Luo, G. Q., Wang, T. Y., & Zhang, X. H. (2013). Review of low profile substrate integrated waveguide cavity backed antennas. International Journal of Antennas and Propagation.

Menkominfo Tegaskan Frekuensi 5G di Indonesia Tak Ganggu Penerbangan. (2022). Kominfo. Retrieved from https://www.kominfo.go.id/content/detail/39470/siaran-pers-no-

hmkominfo012022-tentang-menkominfo-tegaskan-frekuensi-5g-di-indonesia-takganggu-penerbangan/0/siaran_pers

Mukherjee, S, Biswas, A., & Srivastava, K. V. (2014). Broadband Substrate Integrated Waveguide Cavity-Backed Bow-Tie Slot Antenna. IEEE Antennas and Wireless Propagation Letters, 13, 1152–1155.

Mukherjee, Soumava, & Biswas, A. (2018). Design of Planar High-Gain Antenna Using SIW Cavity Hybrid Mode. IEEE Transactions on Antennas and Propagation, 66(2), 972–977. https://doi.org/10.1109/TAP.2017.2780980

Mukherjee, Soumava, Ghosh, S., & Biswas, A. (2021). Design of Compact SIW Cavity Backed Self-triplexing Planar Slot Antenna for Triple Band Application. 15th European Conference on Antennas and Propagation, EuCAP 2021. https://doi.org/10.23919/EuCAP51087.2021.9411029

Natali, Y., & Larasati, M. (2019). Gain Enhancement Using Stub and Stacked Hexagon Microstrip Antenna for 5G Communication. In Proceedings - 2019 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications, ICRAMET 2019 (pp. 49–52). https://doi.org/10.1109/ICRAMET47453.2019.8980392

Nayak, A. K., & Patnaik, A. (2017). Design of an SIW Corrugated H-plane Horn Antenna with Improved Performance. 2017 IEEE Appl. Electromagnetics Conf. (AEMC) (pp. 34–35).

Padilla, P. (2022). Efficient Design of H-Plane SIW Horn Antenna Array at mmWaves. In 2022 16th European Conference on Antennas and Propagation (EuCAP).

Paliwal, G. J., Kumar, A., & Sengupta, J. (2023). SIW Cavity-Backed Slot Antenna Using High-Order Radiation Modes for Broadband Applications in X Band. In 2023 IEEE International Symposium On Antennas And Propagation (ISAP) (pp. 1–2). IEEE. https://doi.org/10.1109/ISAP57493.2023.10388709

Pozar, D. M. (2012). Microwave engineering (4th ed.). John Wiley & Son, Inc. https://doi.org/10.1109/45.31588

Saghati, A. P., Saghati, A. P., & Entesari, K. (2017). An Ultra-Miniature SIW Cavity-Backed Slot Antenna. IEEE Antennas and Wireless Propagation Letters, 16, 313–316.

Sepryanto, S., Attamimi, S., & Sirait, F. (2020). Perancangan Antena Mikrostrip SIW Cavity-Backed Modified Dumbell-Shaped Slot Untuk Pengaplikasian Pada 5G. Jurnal Teknologi Elektro, 11(2), 115–119. https://doi.org/10.22441/jte.2020.v11i2.008

Shi, Y., Liu, J., & Long, Y. (2017). Wideband Triple-and Quad-Resonance Substrate Integrated Waveguide Cavity-Backed Slot Antennas with Shorting Vias. IEEE Transactions on Antennas and Propagation, 65(11), 5768–5775. https://doi.org/10.1109/TAP.2017.2755118

Wu, Q., Wang, H., Yu, C., & Hong, W. (2016). Low-Profile Circularly Polarized Cavity-Backed Antennas Using SIW Techniques. IEEE Transactions on Antennas and Propagation, 64(7), 2832–2839. https://doi.org/10.1109/TAP.2016.2560940

Wu, Q., Yin, J., Yu, C., Wang, H., & Hong, W. (2019). Broadband Planar SIW Cavity-Backed Slot Antennas Aided by Unbalanced Shorting Vias. IEEE Antennas and Wireless Propagation Letters, 18(2), 363–367. https://doi.org/10.1109/LAWP.2019.2891108

Xiang, L., Zhang, Y., Yu, Y., & Hong, W. (2020). Characterization and Design of Wideband Penta- And Hepta-Resonance SIW Elliptical Cavity-Backed Slot Antennas. IEEE Access, 8, 111987–111994. https://doi.org/10.1109/ACCESS.2020.3002433

Yun, S., Kim, D. Y., & Nam, S. (2012). Bandwidth and Efficiency Enhancement of Cavity-Backed Slot Antenna Using a Substrate Removal. IEEE Antennas and Wireless Propagation Letters, 11, 1458–1461. https://doi.org/10.1109/LAWP.2012.2230392

Zerfaine, A., & Djerafi, T. (2021). Ultra-Broadband Circularly Polarized Antenna Array Based on Microstrip to SIW Junction. IEEE Transaction on Antennas and Propagation, October(Early Access), 14–19. https://doi.org/10.1109/TAP.2021.3119098

Zhang, G., & Xu, Z. (2014). Development of Circularly Polarized Based on Dual-mode Hexagonal SIW Cavity. In 2014 15th International Conference on Electronic Packaging Technology (pp. 1283–1286). IEEE. https://doi.org/10.1109/ICEPT.2014.6922878




DOI: https://doi.org/10.26760/elkomika.v12i3.597

Refbacks

  • Saat ini tidak ada refbacks.


_______________________________________________________________________________________________________________________

ISSN (cetak) : 2338-8323 | ISSN (elektronik) : 2459-9638

diterbitkan oleh :

Teknik Elektro Institut Teknologi Nasional Bandung

Alamat : Gedung 20 Jl. PHH. Mustofa 23 Bandung 40124

Kontak : Tel. 7272215 (ext. 206) Fax. 7202892

Surat Elektronik : jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________

Statistik Pengunjung

Free counters!

Web

Analytics Made Easy - StatCounter

Lihat Statistik Jurnal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License