4.5 kW High Frequency Transformer Design for Dual Active Bridge (DAB)
Abstract
ABSTRAK
Indonesia bertujuan untuk beralih dari bahan bakar fosil ke sumber energi terbarukan, dengan target integrasi sebesar 23% pada tahun 2025 dan 31% pada tahun 2050. Transisi ini menghadapi tantangan akibat sifat terputus-putus dari sumber energi terbarukan yang memengaruhi kualitas listrik. Solid State Transformer (SST) muncul sebagai solusi. Dalam penelitian ini, sebuah trafo frekuensi tinggi dirancang untuk konverter Dual Active Bridge (DAB), dengan leakage inductance menjadi parameter penting. Berdasarkan perhitungan yang dilakukan, menunjukkan kebutuhan leakage inductance adalah sebesar 277 uH untuk DAB. Untuk memenuhi kebutuhan daya dan nilai leakage inductance tersebut, trafo dengan inti EE48020, 87 lilitan non-seksional, dan ketebalan isolasi 8,4 mm dapat dikembangkan. Hasil simulasi mengkonfirmasi nilai leakage inductance yang dihasilkan sebesar 268,95 uH.
Kata kunci: tranformator frekuensi tinggi, dual active bridge, solid state transformer, kebocoran induktansi, geometri inti
ABSTRACT
Indonesia aims to shift from fossil fuels to renewable energy sources, targeting 23% integration by 2025 and 31% by 2050. This transition faces challenges due to the intermittent nature of renewable sources, impacting power quality. Solidstate transformers (SST) emerge as a solution. In this study, a high-frequency transformer (HFT) is designed for the dual active bridge (DAB), with leakage inductance being a crucial parameter. Calculations indicate a 277 uH requirement for the DAB. To meet power needs and leakage inductance values, an HFT with an EE48020 core, 87 non-sectional turns, and 8.4 mm insulation thickness is developed. Simulation results confirm a leakage inductance of 268.95 uH for the HFT.
Keywords: high frequency transformer, dual active bridge, solid state transformer, leakage inductance, core geometry
Keywords
Full Text:
PDFReferences
Ayadi, F., Colak, I., Garip, I., & Bulbul, H. I. (2020). Impacts of Renewable Energy Resources in Smart Grid. 2020 8th International Conference on Smart Grid (IcSmartGrid), (pp. 183–188). https://doi.org/10.1109/icSmartGrid49881.2020.9144695
Calmont. (2022). Solid and Stranded Conductor AWG Chart. https://www.calmont.com/wpcontent/uploads/calmont-eng-wire-gauge.pdf
Dey, S., Chakraborty, S. S., Singh, S., & Hatua, K. (2022). Design of High Frequency Transformer for a Dual Active Bridge (DAB) Converter. 2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT), (pp. 1–6). https://doi.org/10.1109/GlobConPT57482.2022.9938249
Elrajoubi, A. M., & Ang, S. S. (2019). High-Frequency Transformer Review and Design for Low-Power Solid-State Transformer Topology. 2019 IEEE Texas Power and Energy Conference (TPEC), (pp. 1–6). https://doi.org/10.1109/TPEC.2019.8662131
Gautam, S. P., Kedia, S., Bahirat, H. J., & Shukla, A. (2018). Design Considerations for Medium Frequency High Power Transformer. Proceedings of 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES 2018, (pp. 2370–2375). https://doi.org/10.1109/PEDES.2018.8707697
Heathcote, M. J. (2007). J & P Transformer Book, Thirteenth Edition. https://doi.org/https://doi.org/10.1016/B978-0-7506-8164-3.X5000-5
Hoang, K. D., & Wang, J. (2012). Design optimization of high frequency transformer for dual active bridge DC-DC converter. 2012 XXth International Conference on Electrical Machines, (pp. 2311–2317). https://doi.org/10.1109/ICElMach.2012.6350205
Maghfiroh, M. F. N., Pandyaswargo, A. H., & Onoda, H. (2021). Current readiness status of electric vehicles in indonesia: Multistakeholder perceptions. Sustainability (Switzerland), 13(23), 1–25. https://doi.org/10.3390/su132313177
Magnetics. (2022). Magnetics Ferrite Cores. https://www.mag-inc.com/Media/Magnetics/File-Library/Product%20Literature/Ferrite%20Literature/Magnetics-2022-Ferrite-Catalog.pdf?ext=.pdf
McLyman, C. W. T. (2004). Transformer and inductor design handbook. Marcel Dekker.
Ouyang, Z., Thomsen, O. C., & Andersen, M. A. E. (2009). The analysis and comparison of leakage inductance in different winding arrangements for planar transformer. 2009 International Conference on Power Electronics and Drive Systems (PEDS), (pp. 1143–1148). https://doi.org/10.1109/PEDS.2009.5385844
Parihar, K. S., Khan, W., Dar, J. A., & Pathak, M. K. (2022). A Hybrid modulation scheme for AC-AC Dual Active Bridge-based Solid-State Transformer. 2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), (pp. 1–6). https://doi.org/10.1109/PEDES56012.2022.10080750
Rahrovi, B., Mehrjardi, R. T., & Ehsani, M. (2021). On the Analysis and Design of High-Frequency Transformers for Dual and Triple Active Bridge Converters in More Electric Aircraft. 2021 IEEE Texas Power and Energy Conference (TPEC), (pp. 1–6). https://doi.org/10.1109/TPEC51183.2021.9384990
Ruiz, F., Perez, M. A., Espinosa, J. R., Gajowik, T., Stynski, S., & Malinowski, M. (2020). Surveying Solid State Transformer Structures and Controls Providing Highly Efficient and Controllable Power Flow in Distribution Grids. IEEE Industrial Electronics Magazine, 14, 56–70. https://doi.org/10.1109/MIE. 2019.2950436
Saber, A. Y., & Vebatagamoorthy, G. K. (2011). Plug in Vehicles and Renewable Energy Sources for Cost and Emission Reductions. IEEE Transactions on Industrial Electronics, 58, 1229–1238. https://doi.org/10.1109/TIE.2010. 2047828
She, X., Huang, A. Q., & Burgos, R. (2013). Review of solid-state transformer technologies and their application in power distribution systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 1(3), 186–198. https://doi.org/10.1109/JESTPE.2013.2277917
Tariq, M., Iqbal, M. T., Maswood, A. I., & Ullah Khan, M. S. (2020). Dual Transformer Based Dual Active Bridge for Solid State Transformer in Distribution System. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, (pp. 3666–3671). https://doi.org/10.1109/IECON43393.2020.9254781
Texas Instrument. (2019). Bidirectional, Dual Active Bridge Reference Design for Level 3 Electric Vehicle Charging Stations. www.ti.com
Winarno, O. T., Alwendra, Y., & Mujiyanto, S. (2017). Policies and strategies for renewable energy development in Indonesia. 2016 IEEE International Conference on Renewable Energy Research and Applications, ICRERA 2016, (pp. 270–272). https://doi.org/10.1109/ICRERA.2016.7884550
Yang, Z., Tahir, M., Hu, S., Huang, Q., & Zhu, H. (2022). Transformer Leakage Inductance Calculation Method with Experimental Validation for CLLLC Converter Topology. Energies, 15(18), 1–14. https://doi.org/10.3390/en15186801
Zhang, X., Xiao, F., Wang, R., Kang, W., & Yang, B. (2022). Modeling and Design of High-Power Enhanced Leakage-Inductance-Integrated Medium-Frequency Transformers for DAB Converters. Energies, 15(4), 1–23. https://doi.org/10.3390/en15041361
Zhao, Y., Zhang, G., Liao, Z., Wan, L., Li, Y., & Yang, F. (2020). Optimal Design of Insulation Structure of HV-HF Transformer Based on High-Frequency Insulation Properties of Gas-Solid System. 2020 IEEE Electrical Insulation Conference (EIC), (pp. 482–485). https://doi.org/10.1109/EIC47619.2020.9158702
DOI: https://doi.org/10.26760/elkomika.v12i2.367
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.