Analisis Perancangan dan Pemasangan PLTS Kapasitas 1,1 MWp pada Pabrik Farmasi di Kota Semarang
Sari
ABSTRAK
Biaya utilitas adalah salah satu komponen terbesar dalam biaya produksi sebuah pabrik farmasi. Dari total biaya utilitas, 63% berasal dari pemakaian energi listrik. Jika energi listrik tersebut dapat diperoleh dari Energi Baru Terbarukan (EBT) hingga 10.65%, maka akan berdampak positif bagi biaya produksi. EBT yang dapat dipakai adalah Pembangkit Listrik Tenaga Surya (PLTS) dengan memanfaatkan atap gedung produksi. Selain penghematan perlu diperhatikan dampak interkoneksi PLTS terhadap arah aliran daya, kestabilan sistem kelistrikan saat gangguan, dan potensi terhadap sambaran petir ke instalasi PLTS. Optimalisasi desain PLTS dengan Helioscope menunjukkan kapasitas PLTS yang dapat dipasang hingga 1,1 MWp. Hasil analisis aliran daya dengan ETAP menunjukkan bahwa daya reaktif yang mengalir balik ke jaringan PLN sangat kecil. Sistem kelistrikan dengan injeksi daya dari PLTS ini dapat stabil setelah mengalami gangguan. Berdasarkan metode sudut perlindungan maka untuk 9 bangunan yang dipasang PLTS tersebut diperlukan proteksi petir level IV.
Kata kunci: energi surya, kestabilan sistem tenaga, aliran daya, perlindungan sambaran petir
ABSTRACT
Utility costs are one of the largest components in the production expenses of a pharmaceutical plant. Among utility costs, 63% of total cost takes from electricity consumption. If this electricity can be supplied from Renewable Energy (RE) up to 10.65%, it will have a positive impact on production costs. The viable RE source is PhotoVoltaic Solar Power (PV) by utilizing the building's production area rooftop. The others impact must be given to the PV system's effects on power flow direction, electrical system stability during disturbances, and susceptibility to lightning strikes on the PV installation. Optimation result of the PV system design using Helioscope indicates a capacity of up to 1,1 MWp. Power flow analysis using ETAP results demonstrate minimal reactive power flowing back to the grid. The electrical system with power injection from the PV system regains stability after disturbance. Based on the angle protection method, a lightning protection level IV is required for the 9 buildings with PV systems.
Keywords: Solar energy, power system stability, power flow, lightning strike protection.
Kata Kunci
Teks Lengkap:
PDFReferensi
Almaktar, M., Falah, A., Hasan, Z., Elbreki, A. M., & Mohamed, F. A. (2022). Power Quality Assessment of Karabuk University’S Grid-Connected Microgrid under High Penetration of PV Generation. ISMSIT 2022 - 6th International Symposium on Multidisciplinary Studies and Innovative Technologies, Proceedings, (pp. 472–477).
Amole, A. O., Oladipo, S., Olabode, O. E., Makinde, K. A., & Gbadega, P. (2023). Analysis of grid/solar photovoltaic power generation for improved village energy supply: A case of Ikose in Oyo State Nigeria. Renewable Energy Focus, 44, 186–211.
Solar, A. (2023). Helioscope Software and Aplication. Retrieved from www. helioscope.aurorasolar.com
D Chathurangi, U. J., & S Perera, A. A. (2019). Evaluation of Maximum Solar PV Penetration: Deterministic Approach for Over Voltage Curtailments. Proceedings of 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe).
Hetita, I., Zalhaf, A. S., Mansour, D. E. A., Han, Y., Yang, P., & Wang, C. (2022). Modeling and protection of photovoltaic systems during lightning strikes: A review. Renewable Energy, 184, 134–148.
Kamaruzaman, M. Z., Wahab, N. I. A., & Nasir, M. N. M. (2018). Reliability Assessment of Power System with Renewable Source using ETAP. International Conference on System Modeling & Advancement in Research Trends, (pp. 236–242).
Khenissi, I., Sellami, R., Fakhfakh, M. A., Neji, R., & Derbel, F. (2020). Effects of high PV penetration level on voltage and frequency profile of a distribution network. Proceedings of the 17th International Multi-Conference on Systems, Signals and Devices, SSD 2020, (pp. 559–564).
Kotb, S. A., Zaky, M. M., Elbaset, A. A., & Morad, M. (2022). Application of hybrid renewable energy for supplying the emergency power supply system in case of station blackout in nuclear power plant. Annals of Nuclear Energy, 175.
Kumar, N. M., Chakraborty, S., Yadav, S. K., Singh, J., & Chopra, S. S. (2022). Advancing simulation tools specific to floating solar photovoltaic systems – Comparative analysis of field-measured and simulated energy performance. Sustainable Energy Technologies and Assessments, 52.
Mohamed, A., Kanwhen, O., & Bobker, M. (2022). Distributed energy resources for water resource recovery facilities: A metropolitan city case study. Applied Energy, 327.
Mohmmedali, A. F. G., Hamouda, M., & Touhami, G. (2021). Dynamic Impact Analysis of Integrating a 6 MW Solar Photovoltaic Power Plant into Medium Voltage Distribution Network. European Journal of Electrical Engineering, 23(5), 417–422.
Refaat, S. S., Abu-Rub, H., Sanfilippo, A. P., & Mohamed, A. (2018). Impact of grid-tied largescale photovoltaic system on dynamic voltage stability of electric power grids. IET Renewable Power Generation, 12(2), 157–164.
Republik Indonesia, M. E. S. D. M. (2021). Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia Npmpr 26 Tahun 2021 Tentang Pembangkit Listrik Tenaga Surya Atap yang Terhubung Pada Jaringan Tenaga Listrik Pemegang Izin Usaha Penyediaan Tenaga Listrik Untuk Kepentingan Umun.
Rudge, K. (2021). The potential for community solar in Connecticut: A geospatial analysis of solar canopy siting on parking lots. Solar Energy, 230, 635–644.
Satpathy, P. R., Aljafari, B., Thanikanti, S. B., & Madeti, S. R. K. (2023). Electrical fault tolerance of photovoltaic array configurations: Experimental investigation, performance analysis, monitoring and detection. Renewable Energy, 206, 960–981.
Sevik, S. (2022). Techno-economic evaluation of a grid-connected PV-trigeneration-hydrogen production hybrid system on a university campus. International Journal of Hydrogen Energy, 47(57), 23935–23956.
Singhasathein, A., & Sumanonta, K. (2020). The Analytical of Penetration Distance due to the Lightning Flash for the Photovoltaic Module. Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), (pp. 669–672).
Sriyanto, N. N., Warsito, A., & Syakur, A. (2018). Simulasi Penentuan Kebutuhan Bangunan Terhadap Sistem Proteksi Petir Eksternal Pada Gedung ICT Center. TRANSIENT, 7(3), 701–708.
Syafii, El Gazaly, A., & Abadi, A. (2019). Load Flow Analysis of PV System Integration in Universitas Andalas Distribution System. Electrical, Telecommunication and Computer Engineering (ELTICOM), 17–20.
PVGIS, the E. C. (2013). PHOTOVOLTAIC GEOGRAPHICAL INFORMATION SYSTEM. Retrieved from www.re.jrc.ec.europa.eu/pvg_tools/en/#MR
Upadhyay, T., & Jamnani, J. G. (2022). Simulation and analysis of solar photovoltaic penetration in conventional power system. Materials Today: Proceedings, 62(P13), 7281–7287.
Zain Ul Abideen, M., Ellabban, O., Refaat, S. S., Abu-Rub, H., & Al-Fagih, L. (2019). A Novel Methodology to Determine the Maximum PV Penetration in Distribution Networks. Dalam 2019 2nd International Conference on Smart Grid and Renewable Energy (SGRE).
DOI: https://doi.org/10.26760/elkomika.v12i2.378
Refbacks
- Saat ini tidak ada refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.