Sistem Pencegahan Illegal Fishing di Laut Batam menggunakan YOLOv7 berbasis Notifikasi Telegram
Sari
ABSTRAK
Pulau Batam menjadi salah satu pulau indonesia terluar yang berbatasan langsung dengan negara tetangga. Penerapan YOLOv7 untuk mendeteksi kapal di laut Batam mampu mendeteksi objek kapal dengan hasil pengujian setelah melakukan training 100 epoch menghasilkan nilai precision sebesar 1.00 dan nilai confidence 0.882 menunjukkan tingkat kepercayaan hasil deteksi yang tinggi pada model YOLOv7. Hasil skor F1 sebesar 0.99 pada confidence 0.729 menunjukkan hasil bahwa model ini menghasilkan tingkat akurasi yang tinggi dalam menemukan objek. Berdasarkan hasil evaluasi menggunakan confusion matrix menunjukkan hasil akurasi yang tinggi dari setiap class pada model YOLOv7 yaitu Ferry 93%, KapalNelayanIndo 85%, KapalNelayanMalaysia 89%, KapalNelayanThailand 91%, KapalNelayanVietnam 82%, Speedboat 94%, dan Tanker 83%. Hasil pengujian aplikasi website yang terintegrasi dengan YOLOv7 dan bot Telegram menghasilkan website yang mampu mendeteksi objek dan mengirimkan notifikasi sehingga diharapkan mampu mencegah illegal fishing.
Kata kunci: Deteksi, Deep Learning, Kapal, Telegram, YOLOv7
Â
ABSTRACT
Batam Island is one of Indonesia's outermost islands bordering neighboring countries. The application of YOLOv7 to detect ships in the Batam Sea was able to detect ship objects with test results after carrying out 100 epoch training resulting in a precision value of 1.00 and a confidence value of 0.882 indicating a high level of confidence in the detection results in the YOLOv7 model. The F1 score of 0.99 at confidence 0.729 shows that this model produces high accuracy in finding objects. Based on the evaluation results using the confusion matrix, it shows high accuracy results for each class in the YOLOv7 model, namely Ferry 93%, Indonesian Fisherman's Ship 85%, Malaysian Fisherman's Ship 89%, Thai Fisherman's Ship 91%, Vietnamese Fisherman's Ship 82%, Speedboat 94%, and Tanker 83%. The test results of the website application integrated with YOLOv7 and Telegram bot resulted in a website that is able to detect objects and send notifications so that it is expected to be able to prevent illegal fishing.
Keywords: Detection, Deep Learning, Ship, Telegram, YOLOv7
Kata Kunci
Teks Lengkap:
PDFReferensi
Arizonia Ismail, H., & Kartika, E. (2019). PERAN KEMARITIMAN INDONESIA DI MATA DUNIA. Jurnal Saintek Maritim, 20(1), 83–89.
Cao, L., Zheng, X., & Fang, L. (2023). The Semantic Segmentation of Standing Tree Images Based on the Yolo V7 Deep Learning Algorithm. Electronics (Switzerland), 12(4), 1–15. MDPI.
EĞİ, Y. (2023). YOLO V7 and Computer Vision-Based Mask-Wearing Warning System forCongested Public Areas. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(1), 22–32. Igdir University.
Emerick de Magalhães, M., Barbosa, C. E., Cordeiro, K. de F., Isidorio, D. K. M., & Souza, J. M. de. (2023). Improving Maritime Domain Awareness in Brazil through Computer Vision Technology. Journal of Marine Science and Engineering, 11(7), 1–15. Multidisciplinary Digital Publishing Institute (MDPI).
Fahana, J., Umar, R., & Ridho, F. (2017). Pemanfaatan Telegram Sebagai Notifikasi Serangan untuk Keperluan Forensik Jaringan. Jurnal Sistem Informasi.
Kim, J. H., Kim, N., Park, Y. W., & Won, C. S. (2022). Object Detection and Classification Based on YOLO-V5 with Improved Maritime Dataset. Journal of Marine Science and Engineering, 10(3), 1–14. MDPI.
Kurekin, A. A., Loveday, B. R., Clements, O., Quartly, G. D., Miller, P. I., Wiafe, G., & Agyekum, K. A. (2019). Operational monitoring of illegal fishing in Ghana through exploitation of satellite earth observation and AIS Data. Remote Sensing, 11(3), 1–28. MDPI AG.
Patimah, Sari, D. M., Rustan, F., Rusman, I., Teknik, F., Informatika, T., & Sulawesi Barat, U. (2022). Implementasi PrototypingModel untuk Pengembangan Real-TimeNotifikasi Telegram Api (Application Programming Interface) pada Tugas Akhir Mahasiswa. Retrieved from https://api.telegram.org/bot
Qiu, Y., Lu, Y., Wang, Y., & Jiang, H. (2023). IDOD-YOLOV7: Image-Dehazing YOLOV7 for Object Detection in Low-Light Foggy Traffic Environments. Sensors, 23(3), 1–22. MDPI.
Romadhanti, I., Kurniastuti, I., & Wulan, T. (2021). Pemrosesan Citra Kuku Jari Tangan Menggunakan Metode Glcm (Grey Level Co-Occurrence Matrix). Retrieved from https://www.researchgate.net/publication/350676479
Shindo, T., Watanabe, T., Yamada, K., & Watanabe, H. (2023). Accuracy Improvement of Object Detection in VVC Coded Video Using YOLO-v7 Features. arXiv. Retrieved from http://arxiv.org/abs/2304.00689
Shobha, G., & Rangaswamy, S. (2018). Machine Learning. Handbook of Statistics (Vol. 38, pp. 197–228). Elsevier B.V.
Singh, M., Verma, A., Parasher, A., Chauhan, N., & Budhiraja, G. (2019). Implementation of Database Using Python Flask Framework. International Journal of Engineering and Computer Science, 8(12), 24890–24893. Valley International.
Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2022). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv, 1–15. Retrieved from http://arxiv.org/abs/2207.02696
Wang, Y., Wang, H., & Xin, Z. (2022). Efficient Detection Model of Steel Strip Surface Defects Based on YOLO-V7. IEEE Access, 10, 133936–133944. Institute of Electrical and Electronics Engineers Inc.
Wijayanti, P. T., Putri, D., Wahyuniarti, S., & Fitriono, R. A. (2021). Tindak Pidana Illegal Fishing di Perairan NatunaDalam Perspektif Kriminologi. Jurnal Pendidikan dan Ilmu Sosial, 2, 16–23.
Zhang, Y., Guo, Z., Wu, J., Tian, Y., Tang, H., & Guo, X. (2022). Real-Time Vehicle Detection Based on Improved YOLO v5. Sustainability (Switzerland), 14(19), 1–19. MDPI.
Zhou, S., Cai, K., Feng, Y., Tang, X., Pang, H., He, J., & Shi, X. (2023). An Accurate Detection Model of Takifugu rubripes Using an Improved YOLO-V7 Network. Journal of Marine Science and Engineering, 11(5), 1–15. MDPI.
DOI: https://doi.org/10.26760/elkomika.v12i1.175
Refbacks
- Saat ini tidak ada refbacks.
_______________________________________________________________________________________________________________________
ISSN (cetak) : 2338-8323 | ISSN (elektronik) : 2459-9638
diterbitkan oleh :
Teknik Elektro Institut Teknologi Nasional Bandung
Alamat : Gedung 20 Jl. PHH. Mustofa 23 Bandung 40124
Kontak : Tel. 7272215 (ext. 206) Fax. 7202892
Surat Elektronik : jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Statistik Pengunjung
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.