
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika

ISSN(p): 2338-8323 | ISSN(e): 2459-9638 | Vol. 11 | No. 1 | Halaman 128 - 142
DOI : http://dx.doi.org/10.26760/elkomika.v11i1.128 Januari 2023

ELKOMIKA – 128

Object Detection and Pose Estimation with RGB-D
Camera for Supporting Robotic Bin-Picking

EKO RUDIAWAN JAMZURI, RISKA ANALIA, SUSANTO

Department of Electrical Engineering, Politeknik Negeri Batam, Indonesia
Email: ekorudiawan@polibatam.ac.id

Received 30 November 2022 | Revised 20 Desember 2022 | Accepted 3 Januari 2023

ABSTRAK

Tujuan dari penelitian ini adalah untuk mendeteksi objek dan mengestimasi pose
objek menggunakan kamera RGB-D. Dalam penelitian ini, kami mengusulkan
pemrosesan data pada citra RGB dan citra depth saja, tanpa menggunakan point
cloud, seperti pada umumnya. Metode yang diusulkan mendeteksi posisi dan
orientasi objek menggunakan DRBox-v2 dari Region of Interest (ROI), yang
sebelumnya diperoleh dari pendeteksian pada penanda ArUco. Hasil deteksi objek
kemudian diskalakan dan digunakan pada citra depth untuk mendapatkan
perkiraan posisi dan orientasi objek. Dari sisi pendeteksi objek, usulan metode
memperoleh nilai Average Precision (AP) sebesar 0,740. Sedangkan untuk
estimator pose, usulan metode menghasilkan kesalahan posisi rata-rata 13,36 mm
dan kesalahan orientasi rata-rata 0,75 derajat. Metode yang diusulkan berpotensi
menjadi alternatif sistem deteksi objek dan estimasi pose pada kamera RGB-D
yang tidak memerlukan pemrosesan point cloud dan tidak memerlukan model
referensi objek.

Kata kunci: deteksi objek, estimasi pose, DRBox, ArUco, bin-picking

ABSTRACT

This study aims to detect objects and estimate the object's pose using an RGB-D
camera. In this study, we proposed data processing on RGB images and depth
images only, without using point clouds, as in general. The proposed method
detected the object's position and orientation using the DRBox-v2 from the Region
of Interest (ROI), which was previously obtained from detecting ArUco markers.
The object detection results were then scaled and used in the depth image to get
the object's approximate position and orientation. In object detection, the
proposed method obtained an Average Precision (AP) value of 0.740. As for the
pose estimator, our method generated an average position error of 13.36 mm and
an average orientation error of 0.75 degrees. Therefore, this method can be an
alternative object detection and pose estimation system on an RGB-D camera that
does not require point cloud processing and an object reference model.

Keywords: object detection, pose estimation, DRBox, ArUco, bin-picking

Object Detection and Pose Estimation with RGB-D Camera for Supporting Robotic Bin-Picking

ELKOMIKA – 129

1. INTRODUCTION

Bin-picking is a classic problem in robotics that aims to pick up a random object from the bin
and place it in a specific, predefined location. Bin-picking can also be called dynamic pick-and-
place when there is uncertainty about the object location to be picked up. Object detectors
and pose estimators are needed to help the robot's perception system. The object detector is
used to identify the object class, while the pose estimator predicts the position and orientation
of the object concerning a particular coordinate system. The object detector and pose
estimator accuracy directly affect the robot's success rate in retrieving objects. Therefore, an
accurate object detection system and pose estimator that produces low error is needed in this
particular problem.

The types of sensors used in the bin-picking robot perception system can be classified into
three types: 1. 2D cameras, 2. RGB-D cameras, and 3. 3D cameras. The 2D cameras are
cheaper in terms of price but require complicated algorithms on the computational side. This
issue is due to the camera's limitations, which can only capture objects in 2D. The 2D camera
has been used by (Kozák et al., 2021) in their research on object detection and poses
estimation. (Kozák et al., 2021) combined feature description with a Convolutional Neural
Network (CNN) to process 2D data. The feature description is used to segment objects, while
CNN is used as a pose estimator. Unlike a 2D camera, using an RGB-D or 3D camera will
produce a point cloud from the captured environment. This point cloud is then matched with
a 3D object model to estimate its pose. This type of method is known as CAD-based pose
estimation. (Lee & Lee, 2020) proposed object detection and CAD-based pose estimation
using cascade object detector and Iterative Closest Points (ICP) methods. YOLOv3 is used to
detect objects and objects' features sequentially. Then the object's features are matched with
the features on the 3D model with ICP to estimate the object's pose. In contrast to (Lee &
Lee, 2020), a voting method on the Point Pair Feature (PPF) descriptor is proposed by (Yan
et al., 2020). Similar features are grouped into a hash table and will be used as a reference
for the pose estimator. Meanwhile, the voting method proposed by (Zhuang et al., 2021)
used the Semantic Point Pair Feature (SPPF) from the part of the object that was previously
detected using MaskRCNN. A different technique is introduced by (Wong et al., 2022), which
uses the bounding box output of the YOLOv4 to extract point cloud data. Furthermore, the
feature detection and alignment are carried out from the point cloud data using Fast Point
Feature Histograms (FPFH). Finally, the pose of the object is estimated by ICP. From the
research based on RGB-D and 3D cameras mentioned, the role of object 3D models is crucial
for pose estimators. The research which uses an RGB-D camera without a 3D model reference
is done by (Soltan et al., 2020). However, the result still has a limitation in estimating object
orientation. Currently, it is only capable of predicting object position.

Our study aims to overcome the limitations of estimating object orientation in non-CAD-based
pose estimation. In this study, we proposed an RGB-D camera as a sensor, accompanied by
ArUco markers and DRBox-v2 as detectors and pose estimators. In contrast to the study by
(Soltan et al., 2020), our results can estimate the position of objects in 3D and also the
orientation of objects on the 𝑧-axis.

This research article is organized as follows. Section 2 will introduce the material and method
used in this investigation. Then, we will describe how the data set is collected and how the
ArUco marker combined with DRBox-v2 detected and estimated the objects. Furthermore, we
describe the evaluation method used to compare our research results. Section 3 will elaborate
on the research results and discuss some limitations of our research. Finally, the article will be
closed with the conclusion statements in Section 4.

Jamzuri et al.

ELKOMIKA – 130

2. MATERIAL AND METHOD

This section will explain the methods and materials used to support the research. The first
subsection will describe the research environment. Furthermore, we will explain the data
collection and train a rotatable object detection. The detection method will be described in the
third subsection. Then, it will continue with the process of estimating poses. Finally, the last
subsection will represent the evaluation of the proposed method.

2.1 Research Environment
Figure 1 (a) shows details of the research environment. We placed the Universal Robot UR3
manipulator robot on a workbench, and the bin was placed on top of the workbench. This bin
is used to put the objects which the robot will take. In this work area, the robot manipulator
will take an object randomly, which is located in the bin, and then put the object in a
predetermined area. We also mounted the RGB-D camera, Intel RealSense D455, directly
above the bin with the face-down position towards the tabletop. This camera, later on, will be
utilized to recognize the objects surrounding the bin and estimate the pose. Furthermore, we
put the ArUco visual markers to facilitate the Region of Interest (ROI) detection. The ArUco
markers are usually used as visual landmarks in indoor robot localization systems (La Delfa
et al., 2016) (Xing et al., 2018) (Yu et al., 2021). Additionally, another application is
used as a marker for the landing area of an Unmanned Aerial Vehicle (UAV) (Wubben et al.,
2019). We chose the ArUco as a visual marker because it is more computationally efficient
than other visual markers, such as AprilTag and STag (Kalaitzakis et al., 2021). Figure 1
(b) shows that we attached four ArUco markers with a unique identity, from ID0 to ID3, to the
table's surface. Additionally, these markers are installed to form a square with a side distance
of 600 mm. These four ArUco markers will be used as a reference for cropping the image to
focus only on the ROI area.

Figure 1. (a) The Robot Manipulator Research Environment, (b) The ArUco Markers

Installation

Object Detection and Pose Estimation with RGB-D Camera for Supporting Robotic Bin-Picking

ELKOMIKA – 131

2.2 Dataset Collection
The first step was to collect the data set, which contains RGB images focused only on the work
area. Then, there are preprocessing and postprocessing stages carried out to collect images.
The block diagram in Figure 2 illustrates the collecting data process. The first step was to
capture an image from the RGB-D camera. At this stage, we have only taken the RGB image
from the camera and have not used the depth image yet. Next, we carried out the identification
process on the four ArUco markers. Then, from the four detected ArUco markers, we took the
identity and position of the markers. The identity was represented by a decimal number 0-3,
and the position was described in terms of the coordinates of a point (𝑥, 𝑦) in the image frame.
Once all ArUco positions were known, we performed the transformation and cropping process.
This process aimed to obtain images focusing only on a predetermined work area. Therefore,
if objects were outside the work area, these objects can be removed. In addition, this process
aimed to obtain images with a smaller resolution but still described the essential information
to detect the object inside the predetermined work area. We used Equations (1) and (2) to
perform the transformation and cropping. The 𝑥௜ and 𝑦௜ were the midpoint locations of the
ArUco markers. In contrast, 𝑥௜

ᇱ and 𝑦௜
ᇱ were the destination coordinate points after the

transformation process was performed. The 𝑇 in Equation (1) was a 3×3 matrix used to
transform the point. This transformation was carried out at the four midpoints of the visual
markers, as described in Equation (2). In the transformation stage, the point (𝑥௜ , 𝑦௜) of the
four ArUco markers will be transformed into the points (𝑥௜

ᇱ, 𝑦௜
ᇱ). We determined the destination

coordinates (𝑥௜
ᇱ, 𝑦௜

ᇱ) with a fixed parameter. Where for ArUco, ID0 is transformed to (0,0), ID1
is moved to (300,0), ID2 is changed to (0,300), and finally, ID3 is shifted to (300,300). This
process will be ultimately formed a square image of 300×300 pixels. Furthermore, this image
will be saved for the following processing stage.

቎

𝑡௜𝑥௜
ᇱ

𝑡௜𝑦௜
ᇱ

𝑡௜

቏ = 𝑇 ⋅ ቈ

𝑥௜

𝑦௜

1
቉ (1)

dst(𝑖) = (𝑥௜
ᇱ, 𝑦௜

ᇱ), src(𝑖) = (𝑥௜ , 𝑦௜), 𝑖 = 0,1,2,3 (2)

We annotated the images after obtaining a collection of images from the preprocessing. This
annotation aimed to mark objects with a rotatable bounding box (RBox). We used a custom
tool, roLabelImg, to do this process. The results of the data annotation will be saved in a text
file in rbox format. This file was then used as a reference to train object detection and become
the ground truth for evaluating the detection accuracy. Our data collection process resulted in
a total of 1100 annotated images. We then randomly separated the data for the Leave-One-
Out Cross-Validation (LOOCV). The LOOCV validation divided the data set into train and test
data, where the data used for the training is 1000 images, and the rest are used in the testing.

Figure 2. Dataset Collection Process Flow

Jamzuri et al.

ELKOMIKA – 132

2.3 Rotatable Object Detection
Object detection is mandatory if the objects to be taken by the robot are in a random location.
On the other hand, the robot joints can be moved to a constant position if the object is in a
fixed location. This method was carried out by (Sartika et al., 2019) on a diamond robot
pick-and-place system. Meanwhile, the scenario in our research was to use a random object's
position inside the bin, so we detected these objects using an RGB-D camera, which produced
an output of RGB and depth images. We used the CNN object detection algorithm, with RGB
images as input. CNN algorithm was a state-of-the-art method for identifying objects in
images. Examples are provided by (Wahyuni & Hendri, 2019) to recognize smoke and fire
and also (Dewi et al., 2019) to recognize various car types in the Intelligence Transportation
System (ITS). Generally, object detection produced detection output in classes and bounding
boxes. However, the object's orientation was difficult to know because the output was
represented in a box. Therefore, we need further processing to identify the object's heading.
We propose an object detection system using the DRBox-v2 (An et al., 2019) to overcome
these limitations.

DRBox-v2 was initially proposed by (An et al., 2019) to identify objects in Synthetic Aperture
Radar (SAR) images. SAR images are two-dimensional images generated by satellite radar and
have a grayscale color. In this study, we used DRBox-v2 to detect text markers in RGB images
produced by the RGB-D camera. An overview of the DRBox-v2 architecture is shown in Figure
3. DRBox-v2 uses the VGG16 architecture (Simonyan & Zisserman, 2014) to extract the
features. Meanwhile, to predict object class and location, DRBox-v2 took the convolutional
layer's output from VGG16, which is layer conv3_3 and layer conv4_3.

Detection in DRBox-v2 began with model training, initiated with preprocessing of the
annotated training data. This preprocessing aimed to obtain positive and negative samples
from annotated images. Preprocessing was done by calculating the ArIoUଵ଼଴ of the RBox and

Figure 3. The Proposed Object Detection and Pose Estimation System

Object Detection and Pose Estimation with RGB-D Camera for Supporting Robotic Bin-Picking

ELKOMIKA – 133

the prior RBox. The prior RBox was similar to the anchor box in YOLO (Redmon et al., 2016)
but had an orientation parameter for rotating the box to a certain angle. The prior RBox will
be placed at a coordinate point with a specific stride interval during preprocessing. Then,
RBoxes were generated on specific parameters of length, width, and orientation, according to
the object's size. Furthermore, the ArIoUଵ଼଴ will be calculated using Equation (3), where 𝐴 was
the RBox created and 𝐵 was the annotated RBox, while 𝐴መ denoted to an RBox A with
predetermined length, width, and orientation parameters. Equation (3) calculated ArIoUଵ଼଴ by
ignoring the orientation of the object's head and tail, the overlap was only calculated at a
normalized angle from 0° to 180°. However, if the object's head and tail orientation were
essential, then the absolute operator in Equation (3) can be omitted. In this preprocessing,
positive samples were selected from the RBox with the ArIoUଵ଼଴ exceeding the 𝑇௠௔௧௖௛ and
from the RBox with the highest ArIoUଵ଼଴.

ArIoUଵ଼଴(𝐴, 𝐵) =
area(𝐴መ ∩ 𝐵)

area(𝐴መ ∪ 𝐵)
|cos(𝜃𝐴 − 𝜃𝐵| (3)

After preprocessing, the model will be trained to minimize two loss functions: confidence loss
(𝐿௖௢௡௙) and location loss (𝐿௟௢௖). Confidence loss is a function of minimizing object classification
errors, while location loss is a function of calculating the regression error of the predicted
RBox. These loss functions are then combined to obtain the total loss from Equation (4), where
𝑁ଵ represented the number of positive samples, and 𝑁ଶ denoted the number of negative
samples. Meanwhile, the 𝐿௖௢௡௙ and 𝐿௟௢௖ are obtained from Equations (5) and (6). The 𝐿௖௢௡௙
combines Hard Negative Meaning (HNM) (Xuan et al., 2020) and Focal Loss (FL) (Lin et
al., 2020) functions to achieve good results. In Equation (5), variable 𝐼 defined a matrix
indicating that the prior RBox matches the ground truth RBox, and 𝑐 is the probability vector
of the predicted class. In Equation (6), 𝐾 represents the prediction, and 𝐺 is the ground truth.
There is a smooth௅ଵ function, which is an extension of the 𝐿1௡௢௥௠ in 𝐿௟௢௖. Function smooth௅ଵ
can be calculated using Equation (7).

𝐿(𝐼, 𝑐, 𝑟, 𝑔) =
1

𝑁ଵ + 𝑁ଶ
𝐿௖௢௡௙(𝐼, 𝑐) +

1

𝑁ଶ
𝐿௟௢௖(𝐼, 𝐾, 𝐺) (4)

𝐿௖௢௡௙ = − ෍ (1 − 𝑐௜)ఊlog(𝑐௜) − ෍ 𝑐௝
௬

log(1 − 𝑐௝)

௝∈Hard_Neg௜∈Pos

 (5)

𝐿௟௢௖ = ෍ ෍ ෍ 𝐼௜௝smooth௅ଵ(𝑘௝
௠ − 𝑔௝

௠)

௠∈{௫,௬,௪,௟,ఏ}௝௜∈Pos

 (6)

smooth௅ଵ(𝑠) = ൜
0.5𝑠ଶ, if |s| < 1

|𝑠| − 0.5, else
 (7)

After going through the training, DRBox-v2 can be used for inference to process images in a
feedforward manner with the weights and biases obtained. The prediction results will be post-
processed by selecting an RBox with a particular probability and choosing one RBox if there
are stacked RBoxes with the same predicted class. The predicted RBox will be selected if the
probability value exceeds 𝑇௖௢௡௙. In addition, if there are stacked RBoxes with the same class,
a Non-Maximum Suppression (NMS) (Hosang et al., 2017) will be performed to take the
one with the highest probability. The final result will generate a vector
[𝑘௫ 𝑘௬ 𝑘௟ 𝑘௪ 𝑘ఏ]், where (𝑘௫, 𝑘௬) defines the RBox's location in the camera frame, 𝑘௟
and 𝑘௪ define RBox length and width, respectively, and 𝑘ఏ defines the RBox heading angle.

Jamzuri et al.

ELKOMIKA – 134

2.4 Pose Estimation
In the case study of bin-picking, the object's pose must be represented against the world
coordinate to facilitate the calculation of the inverse kinematics (Du et al., 2021). Therefore,
we defined the world coordinate at the midpoint of the ArUco marker ID0 so that the object's
location in a three-dimensional coordinate will be represented concerning the origin point of
this frame coordinate. As seen in Figure 1 (b), the 𝑥-axis points to the right, the 𝑦-axis points
down, and the 𝑧-axis points out of the image. Moreover, the orientation is represented
according to the object's rotational direction on a particular axis.

We combined distance measurement from depth image with the detection result of the object
and ArUco to estimate the object's pose. As Figure 1 (b) explained, we placed ArUco markers
600 mm apart in each square corner. Moreover, we processed the image to take a 300×300
pixels ROI. From the known distance between ArUco and ROI dimensions, the scale factor
from pixels to millimeters (𝑠) can be obtained. We used 𝑠 for converting the object's location
in the camera frame to the object's position (𝑥, 𝑦) in the world coordinate. Meanwhile, to obtain
the object's position on 𝑧-axis, we performed further data processing on the depth image. The
depth image represented the distance in terms of gray intensity in millimeters. So, the object's
distance from the camera can be determined by taking the gray intensity at the object's center
point. However, because we detected objects from a 300×300 ROI resulting from
transformation, the object's coordinate must be transformed back to the 640×480 depth image
coordinate. This inverse transformation was described by Equation (8), where 𝑘௫ and 𝑘௬ are
the object's midpoints in a 300×300 ROI. Meanwhile, 𝑇 is the transformation matrix previously
described in Equation (1). This inverse transformation produces 𝑥௖ and 𝑦௖, which defined the
object location of the object in the 640×480 image. After getting 𝑥௖ and 𝑦௖, we took the gray
value of the depth image at those coordinate pixels. We symbolized this value by 𝑑, defined
by estimating the distance from the camera to the object's surface. The final result of the
object's position was represented by vector 𝑝 in Equation (9). There is a constant parameter
that defines the distance between the table surface to the camera lens (ℎ௖). On the other
hand, for determining object orientation, the DRBox-v2 output 𝑘ఏ can be taken directly as
object orientation. The object's orientation representation in a rotation matrix is described by
Equation (10), where 𝑅௭ defines the object's orientation in the 𝑧-axis.

ቈ

𝑥௖

𝑦௖

1
቉ = 𝑇ିଵ ⋅ ൥

𝑘௫

𝑘௬

1
൩ (8)

𝑝 = ൥
𝑠 0 0
0 𝑠 0
0 0 1

൩ ⋅ ൥
𝑘௫

𝑘௬

ℎ௖ − 𝑑
൩ (9)

𝑅௭ = ቎
cos(𝑘ఏ) −sin(𝑘ఏ) 0

sin(𝑘ఏ) cos(𝑘ఏ) 0
0 0 1

቏ (10)

2.5 Performance Evaluation
We evaluated two critical performances during the test: object detector accuracy and pose
estimator accuracy. The testing on object detector performance adopts evaluation metrics on
the PASCAL VOC dataset (Everingham et al., 2010), which measured the Mean Average
Precision (𝑚𝐴𝑃). Because of in this study only one class object exists, so the measured metric
is the Average Precision (𝐴𝑃). The calculation of 𝐴𝑃 begins by calculating the True Positive
(𝑇𝑃), True Negative (𝑇𝑁), and False Positive (𝐹𝑃) results from the object detector. The
calculation is carried out on images in the test data set. In addition, this calculation is carried

Object Detection and Pose Estimation with RGB-D Camera for Supporting Robotic Bin-Picking

ELKOMIKA – 135

out when the object detector is set by a particular value of 𝑇௠௔௧௖ . After knowing the 𝑇𝑃, 𝑇𝑁,
and 𝐹𝑃, the precision (𝑃ௗ) and recall (𝑅ௗ) rates can be calculated using Equations (11) and
(12). Furthermore, the precision and recall rates are used to calculate 𝐴𝑃 by using the 11-
point interpolation, which refers to the (Everingham et al., 2010) method.

𝑃ௗ =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (11)

𝑅ௗ =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (12)

The pose estimator performance is measured by calculating how much pose error was
generated. This pose error can be divided into two, namely: 1. position error and 2. orientation
error. The position error is obtained by finding the Euclidean distance from the actual objects
to the predicted object. Since the object's position is represented in three-dimensional
coordinates, the position error (𝑑௘௥௥) could be calculated by Equation (13), where the vector
𝑝 defines the actual position and the vector 𝑝̂ is the predicted position. Meanwhile, the
orientation error can be measured by calculating the difference between the actual and
predicted object orientation on the 𝑧-axis. The measurement takes place on the 𝑧-axis only
because our method is limited in predicting orientations on the 𝑥-axis and 𝑦-axis. This
orientation error (𝜃௘௥௥) can be calculated using Equation (14), while 𝜃 defines the actual
object's heading and 𝜃෠ denotes the predicted object's orientation.

𝑑௘௥௥(𝑝, 𝑝̂) = ඩ෍(𝑝௜ − 𝑝పෝ)ଶ

௡

௜ୀଵ

 (13)

𝜃௘௥௥ = asin (sin (|𝜃෠ − 𝜃|)) (14)

3. RESULT AND DISCUSSION

This section will explain the obtained results of this research. First, we will describe the
parameter settings for the experiment. Next, the results of starting with the model training will
be explained in detail. Then we explain the level of accuracy of the object detector and the
pose estimator.

3.1 Parameter Setting for Experiment
During the experiment, we set parameters in the prior RBox configuration. The baseline model
sets these parameters to various lengths and widths. While the orientation interval is set to a
constant value of 30°. These settings will generate many prior RBoxes, which take a long
preprocessing time. Then, we finetuned these configurations by setting the constant prior
RBox length and width. This determination is based on the object type we detect, one type
with a constant dimension, so the object's length and width in the camera view will not change
too much. We set the prior RBox length and width to 15 and 90 pixels. These values were
determined by analyzing the average prior RBox size that has been annotated, and then the
parameters are set by adding 5 pixels to each average. Additionally, we varied the
configuration of RBox orientation from 10° to 30°, with 10° intervals. Furthermore, we varied
the IoU threshold to determine which configuration yielded the best accuracy.

Jamzuri et al.

ELKOMIKA – 136

3.2 Object Detection Training Performance
The results of the DRBox-v2 training with the settings described in the prior subsection are
illustrated below. First, we described the effect of the orientation interval (𝜃௦௧௘௣) to the
preprocessing time and the preprocessing time in Table 1. Through the data listed in Table 1,
it can be concluded that the smaller the 𝜃௦௧௘௣ interval generated the more prior RBox. In effect,
there is an increase in preprocessing time. As noted in Table 1, the preprocessing time when
𝜃௦௧௘௣ is set at 10° is approximately 68 minutes. Meanwhile, when the configuration is set to
30°, the preprocessing time becomes shorter, around 23 minutes.

We then analyze the 𝜃௦௧௘௣ effect on the training performance. The analysis is carried out by
storing historical loss functions during training. We store the total loss, confidence loss, and
location loss, then plot these values into a graph to analyze their correlation to the number of
epochs. As seen in Figure 4, the entire graph showed a significant decrease in the loss value

Table 1. Effect 𝜽𝒔𝒕𝒆𝒑 to Total Prior RBoxes Generated and Preprocessing Time

𝜽𝒔𝒕𝒆𝒑 Total Prior RBoxes Preprocessing Time
10° 254484 RBoxes 68 Minutes
20° 127242 RBoxes 34 Minutes
30° 84828 RBoxes 23 Minutes

(a) (b)

(c)

Figure 4. Learning Curve with (a) 𝜽𝒔𝒕𝒆𝒑 = 10°, (b) 𝜽𝒔𝒕𝒆𝒑 = 20°, (c) 𝜽𝒔𝒕𝒆𝒑 = 30°

Object Detection and Pose Estimation with RGB-D Camera for Supporting Robotic Bin-Picking

ELKOMIKA – 137

after several training epochs. The whole graph showed that when the training reaches its
maximum epochs, the overall loss drops to 0. However, the decrement speed was slightly
different for each 𝜃௦௧௘௣. It can be seen in Figure 4 (b) when the 𝜃௦௧௘௣ is set to 20°, the loss
decreased very quickly to 0.461 from its initial value of 12.716 before the epoch reached 2500.
Compared to the training curve in Figure 4 (a), when the 𝜃௦௧௘௣ is set to 30°, the loss value
decreases slightly. A significant decrease occurred in the 4100th epoch, with a total recorded
loss value of 0.490, while at the beginning iteration, this value was 12,634. From the graph
comparison, it can be concluded that 𝜃௦௧௘௣ = 20° is the fastest model training configuration
compared to other 𝜃௦௧௘௣ values.

3.3 Object Detection Evaluation Performance
The predicted objects from test images can be seen in Figure 5. This test is performed with
the parameter 𝑇௖௢௡௙ = 0.1 and 𝑇௠௔௧௖௛ = 0.3. Furthermore, we used a trained model with a
configuration 𝜃௦௧௘௣ = 20° and visualized the predicted objects with a red RBox. The green dot
in the middle RBox indicated the object's center point or location concerning the camera frame.
Generally, the detector recognizes the objects, which is indicated by the RBox that marks the
text markers in the image. In addition, the RBoxes faced precisely according to the text
marker's orientation, indicating that text marker orientation has been correctly predicted.
However, the system still failed when detecting overlapping objects, as shown in Figure 5 (b).
In addition, to detect the overlapping objects, several objects failed to be detected, as shown
in Figure 5 (d).

After testing the object detector functionality, then we evaluated the 𝐴𝑃 metrics with several
𝑇௠௔௧௖௛ configurations. We tested the 𝑇௠௔௧௖ in the range of 0.1 to 0.9, with a change interval
of 0.1. Additionally, we calculated the 𝐴𝑃 with different 𝜃௦௧௘௣ parameters, and described the
results in Table 2. The symbol 𝐴𝑃IoU=.1 in Table 2 describes that we measured the 𝐴𝑃 using
𝑇௠௔௧௖௛ = 0.1 or using the ArIoUଵ଼଴ threshold equal to 0.1, as well as other symbols.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Object Detection Result from Region of Interest

Jamzuri et al.

ELKOMIKA – 138

As shown in Table 2, we obtained the maximum 𝐴𝑃 while using the 𝜃௦௧௘௣ = 20°. We found
that the 𝐴𝑃 in the overall 𝑇௠௔௧௖௛ were higher than using the 𝜃௦௧௘௣ = 10° or 𝜃௦௧௘௣ = 30°. The
𝜃௦௧௘௣ which has the worst performance is 𝜃௦௧௘௣ = 10°, and resulted in a smaller 𝐴𝑃 in the
overall 𝑇௠௔௧ threshold compared to the other 𝜃௦௧௘௣ parameters. The data in Table 2 shows
that the greater 𝑇௠௔௧௖௛ will be generated a higher 𝐴𝑃. This condition happened in all 𝜃௦௧௘௣
configurations. A significant decrement will occur if the 𝑇௠௔௧௖௛ is greater than or equal to 0.8.
Conversely, if the 𝑇௠௔௧௖௛ is set to high, it will cause the decrement in 𝐴𝑃. We obtained the
best performance using the 𝜃step = 20° and 𝑇௠௔௧௖௛ = 0.1, with an 𝐴𝑃 score of 0.740.

3.4 Pose Estimation Accuracy
In testing pose estimation, first, we verify the pose estimation approach presented in Section
2.3. Then, we visualized the verification results in Figure 6. Figure 6 (a) shows the object
detection results in the ROI, which is a 300×300 image transformed from the ArUco marker
coordinates. After getting the object's center point and size in the image, the object's
coordinates are transformed back into 640×480 pixels depth and original color image. Figure
6 (b) shows that the markers still precisely mark objects after the inverse transformation, even
in the raw images. Therefore, we also use the inverse transformation to mark the object's
location in the depth image. Next, we use the object's center point in the depth image to
measure the distance from the camera to the object. The measurement results are then used
to estimate the object's position concerning the 𝑧-axis.

We randomly vary the object's pose to test the pose estimator's accuracy by providing a wedge
under the bin to vary the object's height so that the object's height to the table varies. The
variation object height samples are 19 mm, 55 mm, 65 mm, 83 mm, and 139 mm. We then
calculated the position and orientation error values for all detected objects from the 100
sample images. As a result, we got an average error of 13.36 mm for positional error, while
for orientation error, the average error of 0.75°. Meanwhile, the maximum error we got is as
follows; the maximum position error is 158.86 mm, while the maximum orientation error is
1.56°. The most significant factor contributing to the positional error is the measurement result
on the 𝑧-axis. The average error on the 𝑧-axis is 10.80 mm, while on the 𝑥-axis it is 3.55 mm,
and on the 𝑦-axis it is 3.14 mm.

Table 2. Resulted Average Precision Over Different ArIoU Threshold

𝜽௦௧௘௣ 𝑨𝑷IoUୀ.𝟏 𝑨𝑷IoUୀ.𝟐 𝑨𝑷IoUୀ.𝟑 𝑨𝑷IoUୀ.𝟒 𝑨𝑷IoUୀ.𝟓 𝑨𝑷IoUୀ.𝟔 𝑨𝑷IoUୀ.𝟕 𝑨𝑷IoUୀ.𝟖 𝑨𝑷IoUୀ.𝟗
10° 0.604 0.504 0.504 0.504 0.504 0.492 0.468 0.305 0.014
20° 0.740 0.590 0.590 0.590 0.586 0.583 0.571 0.331 0.024
30° 0.687 0.544 0.544 0.544 0.535 0.522 0.508 0.281 0.010

(a) (b) (c)

Figure 6. Resulted Inverse Transformation on The Depth Image

Object Detection and Pose Estimation with RGB-D Camera for Supporting Robotic Bin-Picking

ELKOMIKA – 139

Table 3 presents the pose estimator results for ten different images. In this test, we found a
system failure to detect objects in the third image, which caused the object's pose not to be
estimated. Moreover, we found that the most significant difference between the predicted and
actual positions occurs on the 𝑧-axis. For example, in the first image, when the object is placed
at position 𝑧-axis = 19 mm, the estimated object's positions are 13 mm and 15 mm. This
difference is extensive when compared to the 𝑥-axis and the 𝑦-axis. We suspect that the factor
of RGB-D depth measurement accuracy is causing this problem.

Regarding orientation, sometimes, the estimator generates a flipped angle. For example, in
the second row of the first picture, while the actual object orientation is 171.98°, an estimator
shows the angle of -6.72°. Although the values differ, the final result will be the same after
normalizing the angle. This condition is evidenced by the first image visualization that shows
that RBox correctly marks the object orientation in the image even if the predicted orientation
is flipped. This condition also appears in the third image of the second predicted object.

Table 3. Pose Estimation Result from 5 Sample Images

Image
Actual Object Pose Estimated Object Pose

𝑥
(mm)

𝑦
(mm)

𝑧
(mm)

𝜃
(deg)

𝑥
(mm)

𝑦
(mm)

𝑧
(mm)

𝜃
(deg)

253 323 19 167.39 253 323 13 168.08

448 261 19 171.98 445 262 13 -6.72

462 409 19 4.01 461 409 15 3.28

320 418 55 1.72 316 418 47 1.55

398 310 55 149.06 397 309 46 238.65

229 240 55 159.95 228 239 43 154.75

253 264 65 141.04 254 265 72 232.66

251 144 65 170.26 248 146 59 -8.25

209 306 65 143.33 X X X X

438 349 83 6.30 440 344 75 94.82

221 355 83 9.74 204 353 241 8.33

314 294 83 173.70 305 293 74 170.52

286 249 139 24.64 291 238 128 114.18

439 369 139 10.31 441 358 135 101.53

239 425 139 6.88 244 428 135 5.80

Jamzuri et al.

ELKOMIKA – 140

4. CONCLUSION

We proposed a deep learning-based object detector DRBox-v2 combined with ArUco markers
to detect and estimate object poses in a bin using an RGB-D camera. The results of this study
can be concluded that the orientation interval parameter in DRBox-v2 (𝜃௦௧௘௣) and also the IoU
threshold (𝑇௠௔௧௖௛) has a significant influence on the Average Precision (𝐴𝑃) value of the
detection results. Furthermore, the 𝜃௦௧௘௣ parameter also affects the convergence speed during
model training. The use of 𝜃௦௧௘௣ = 20° results in faster convergence during the training
compared to other 𝜃௦௧௘௣ parameters. Meanwhile, in terms of inference, the experiments we
carried out showed that the best parameters that produced the highest 𝐴𝑃 were 𝜃௦௧௘௣ = 20°
and 𝑇௠௔௧௖௛ = 0.1. At the model inference, the configurations resulted in 𝐴𝑃 = 0.740.
Meanwhile, from the pose estimator, we got an average position error of 13.36 mm. As for
orientation, we obtained an average orientation error of 0.75°. From the experimental results,
there was a very significant error in the position estimation on the 𝑧-axis, which was the result
of depth image processing. Furthermore, we found that the object detector sometimes fails to
detect objects, especially in stacked objects. In future works, we will investigate these issues
so that the pose estimation can estimate the object's position more precisely.

ACKNOWLEDGEMENT

This research is part of the Research and Community Service for Vocational Higher Education
research grant. We thank the Direktorat Jenderal Pendidikan Vokasi, Politeknik Negeri Batam,
and Barelang Robotics and Artificial Lab (BRAIL) for providing the equipment and facilities for
this research.

REFERENCES

An, Q., Pan, Z., Liu, L., & You, H. (2019). DRBox-v2: An Improved Detector With Rotatable

Boxes for Target Detection in SAR Images. IEEE Transactions on Geoscience and

Remote Sensing, 57(11), 8333–8349.

Dewi, I. A., Kristiana, L., Darlis, A. R., & Dwiputra, R. F. (2019). Deep Learning RetinaNet

based Car Detection for Smart Transportation Network. ELKOMIKA: Jurnal Teknik

Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 7(3), 570.

Du, G., Wang, K., Lian, S., & Zhao, K. (2021). Vision-based robotic grasping from object

localization, object pose estimation to grasp estimation for parallel grippers: a review.

Artificial Intelligence Review, 54(3), 1677–1734.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2010). The Pascal

Visual Object Classes (VOC) Challenge. International Journal of Computer Vision, 88(2),

303–338.

Hosang, J., Benenson, R., & Schiele, B. (2017). Learning Non-maximum Suppression. 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017-Janua,

6469–6477.

Object Detection and Pose Estimation with RGB-D Camera for Supporting Robotic Bin-Picking

ELKOMIKA – 141

Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., & Vitzilaios, N. (2021). Fiducial

Markers for Pose Estimation. Journal of Intelligent & Robotic Systems, 101(4), 71.

Kozák, V., Sushkov, R., Kulich, M., & Přeučil, L. (2021). Data-Driven Object Pose Estimation in

a Practical Bin-Picking Application. Sensors, 21(18), 6093.

La Delfa, G. C., Monteleone, S., Catania, V., De Paz, J. F., & Bajo, J. (2016). Performance

analysis of visualmarkers for indoor navigation systems. Frontiers of Information

Technology & Electronic Engineering, 17(8), 730–740.

Lee, S., & Lee, Y. (2020). Real-Time Industrial Bin-Picking with a Hybrid Deep Learning-

Engineering Approach. 2020 IEEE International Conference on Big Data and Smart

Computing (BigComp), 584–588.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollar, P. (2020). Focal Loss for Dense Object

Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2), 318–

327.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-

Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 779–788.

Sartika, E. M., Sarjono, R., & Chrisophras, H. X. (2019). Sistem Pick and Place Dua Derajat

Kebebasan menggunakan Metoda Regresi. ELKOMIKA: Jurnal Teknik Energi Elektrik,

Teknik Telekomunikasi, & Teknik Elektronika, 7(3), 521.

Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale

Image Recognition. 3rd International Conference on Learning Representations, ICLR

2015 - Conference Track Proceedings.

Soltan, S., Oleinikov, A., Demirci, M. F., & Shintemirov, A. (2020). Deep Learning-Based Object

Classification and Position Estimation Pipeline for Potential Use in Robotized Pick-and-

Place Operations. Robotics, 9(3), 63.

Wahyuni, E. S., & Hendri, M. (2019). Smoke and Fire Detection Base on Convolutional Neural

Network. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik

Elektronika, 7(3), 455.

Wong, C.-C., Tsai, C.-Y., Chen, R.-J., Chien, S.-Y., Yang, Y.-H., Wong, S.-W., & Yeh, C.-A.

(2022). Generic Development of Bin Pick-and-Place System Based on Robot Operating

System. IEEE Access, 10, 65257–65270.

Wubben, J., Fabra, F., Calafate, C. T., Krzeszowski, T., Marquez-Barja, J. M., Cano, J.-C., &

Manzoni, P. (2019). Accurate Landing of Unmanned Aerial Vehicles Using Ground

Pattern Recognition. Electronics, 8(12), 1532.

Jamzuri et al.

ELKOMIKA – 142

Xing, B., Zhu, Q., Pan, F., & Feng, X. (2018). Marker-Based Multi-Sensor Fusion Indoor

Localization System for Micro Air Vehicles. Sensors, 18(6), 1706.

Xuan, H., Stylianou, A., Liu, X., & Pless, R. (2020). Hard Negative Examples are Hard, but

Useful. In Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 12359 LNCS (pp. 126–

142).

Yan, W., Xu, Z., Zhou, X., Su, Q., Li, S., & Wu, H. (2020). Fast Object Pose Estimation Using

Adaptive Threshold for Bin-Picking. IEEE Access, 8, 63055–63064.

Yu, J., Jiang, W., Luo, Z., & Yang, L. (2021). Application of a Vision-Based Single Target on

Robot Positioning System. Sensors, 21(5), 1829.

Zhuang, C., Wang, Z., Zhao, H., & Ding, H. (2021). Semantic part segmentation method based

3D object pose estimation with RGB-D images for bin-picking. Robotics and Computer-

Integrated Manufacturing, 68, 102086.

