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ABSTRAK 

Saat ini, robot otonom memiliki peranan signifikan di berbagai bidang. Robot 
otonom meningkatkan efektivitas dan produktivitas sekaligus menurunkan risiko 
dan tingkat kesalahan secara signifikan. Dua paradigma dapat digunakan saat 
merancang robot otonom, yaitu paradigma reaktif dan deliberatif. Paper ini 
merancang sistem kontrol hybrid untuk menggabungkan elemen terbaik dari 
sistem kontrol deliberatif dan reaktif untuk robot pengiriman otonom. Model 
tersebut dibuktikan dengan misi untuk memindahkan tiga objek berwarna, dari 
posisinya ke tujuan. Dari perancangan dan pengujian, sistem hybrid dapat 
meminimalisir kelemahan dari masing-masing sistem, sehingga proses pengiriman 
barang dapat tercapai sesuai dengan rencana dan dapat bereaksi terhadap kondisi 
yang sebelumnya tidak diketahui dalam perencanaan, seperti hambatan. 
Penggunaan sistem hybrid membuka kemungkinan untuk merancang sebuah 
mobile robot otonom yang dapat beroperasi di lingkungan apapun. 

Kata kunci: deliberative, reactive, hybrid, autonomous, robot rover 

ABSTRACT 

Recently, autonomous robots have become increasingly significant in numerous 
fields. Robots with autonomy increase effectiveness and productivity while 
significantly lowering risk and error rates. Two paradigms can be used when 
creating an autonomous robot, namely reactive and deliberative paradigm. This 
paper proposes a hybrid control system to combine the best elements of 
deliberative and reactive control system for an autonomous delivery robot rover. 
The model was proved with a mission to move the three colored objects, from 
their respective positions to the goal cells. From the design and testing the hybrid 
systems can minimize the weaknesses of each system, so that the stuff-delivery 
process can be achieved in accordance with the plan and can react to conditions 
that were not previously known in planning, such as the obstacle. The use of a 
hybrid system opens up the possibility of designing an autonomous mobile robot 
that can operate in any environment. 

Keywords: deliberative, reactive, hybrid, autonomous, robot rover
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1. INTRODUCTION 

One of the most crucial needs for any robotics application is robot autonomy. While designing 
and creating autonomous robots, engineers must overcome many challenges, and fully robot 
autonomy is still a work in progress (Asokan, 2016). Because autonomous robots are 
complex systems, many different software components must interact and work together. Since 
robots are getting more human-like, they are developing into significant systems that must 
adhere to safety standards, including logical, temporal, and real-time constraints (Panigrahi, 
et al, 2021). An important research area of autonomous mobile robotics is the creation of 
companions that live in our environment and perform tasks that help us in our daily lives 
(Ingrand, et al, 2017).  

Two paradigms, namely the deliberative and reactive paradigms, can be used in the design of 
autonomous robots (Murphy, 2000). The fundamental feature of the reactive paradigm is 
all activities are carried out through behaviors (Wang, et al, 2017). The direct mapping of 
sensory inputs to a series of motor activities that are then used to carry out a task resulting in 
behaviors. The reactive paradigm no longer includes the plan element (Tobaruela, et al, 
2017). There is no planning carried out based on a global map or model of the environment 
in reactive architectures, which are made up of a collection of reactive behaviors. Sensing and 
acting go hand in hand in these reactive activities. The reactive paradigm has advantages such 
as being applicable to robots with limited and inexpensive hardware resources, low complexity, 
goal convergence, ease of adaptation to changing conditions, and the ability to safely navigate 
a robot through completely unknown environments with unpredictable moving obstacles 
(Murphy, 2000).   

Behavior-based robots have become well-known in a number of fields in recent years. 
Applications for behavior-based robotics have expanded in fields like demining, search and 
rescue, office automation, and health care, where they are progressively replacing people in 
labor-intensive and risky jobs (Hassani, et al, 2018). The reactive paradigm and a variety 
of related subjects, including its history, guiding principles, practical applications, and ongoing 
research, were covered in (Lazzeri, et al, 2018). In (Savage, et al, 2021), three 
genetically evolved reactive obstacle-avoidance behaviors for mobile robots were reported. 
These behaviors were selected using genetic algorithms to enable mobile robots to react to 
obstacle most effectively as they move toward their target. Three approaches—a traditional 
method based on potential fields, finite state machines (FSM), and probabilistic finite state 
machines (PFSM) based on hidden Markov models (HMM)—were examined (Savage, et al, 
2021). A mobile robot must also sense its surroundings, perceive its working environment, 
plot a trajectory, and respond properly depending on the information as an intelligent system. 
Robotic control architectures define the combination of these capabilities that should be used 
to create and advance autonomous navigation (Alatise, et al, 2020). 

Experimenting with decision-making models using a deliberative architecture requires the 
availability of engineering tools that enable rapid development, deployment, and evaluation 
(Ingrand, et al, 2017). Faced with various open environments and performing various tasks 
and interactions, autonomous robots require distinct considerations to complete their missions 
(Gascueña, et al, 2015). Further research in (Avram, et al, 2022) present a deliberative 
framework aimed at coordinating the automation of behavioral processes of robotic platforms 
intended for operation in harsh environments. Between sensing and acting, deliberative 
architectures have a planning stage. No action can be taken without planning, which is based 
on a map of the environment that the sensors have collected (Ibáñez, et al, 2021).  
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Many intralogistics companies such as manufacturing, warehouses, cross-docking, terminals, 
and hospitals are now using autonomous mobile robots. Autonomous operation under dynamic 
conditions is possible (Cho, et al, 2017). Unlike automated guided vehicle (AGV) systems 
that rely on a central entity for all AGV planning, routing, and dispatch decisions, autonomous 
mobile robots can interact and negotiate independently with other resources, such as machines 
and systems (Fragapane, et al, 2021). Our previous work found that a negotiator can be 
implemented to realize a fully autonomous mobile robot based on the behavior of the reactive 
system (Wijanto, 2022). 

Understanding how to integrate decision-making capabilities into mobile robots is essential for 
designing robots that can manifest high-level intelligence in real-world settings. In hybrid 
designs, reactive behaviors are combined with deliberative motion plans, as in the other two 
models. When deliberative systems compared with reactive architectures, it finds that the 
former work in a more predictable manner, depend more heavily on an accurate and 
comprehensive representation of the world, and produce robot trajectory optimizations. 
Reactive architectures, on the other hand, may function without a model of the world and are 
computationally considerably simpler. They also respond more quickly to dynamic changes in 
the environment. By enabling a high-level deliberative planner to tailor the robot's behaviors 
to the task at hand, known or projected external variables, and available robotic resources, 
this gives a reactive robot more flexibility. 

In this paper, a hybrid control system is designed to combine the best elements of the previous 
two models, i.e., deliberative and reactive control system. Further, this hybrid system is 
designed for autonomous stuff-delivery robot rover. The implementation of the hybrid system 
brings a potential to design a fully autonomous mobile robot in any conditions, such as different 
number and position of stuff object, different number and position of obstacles, and different 
home position. 

The remainder of this paper is organized as follows. Section 2 describes the methods used in 
this research, including design of the world model and proves of the a* algorithm, the control 
system structure, the structure of the robot, the design of the layer structure, and the design 
of the reactive system. Section 3 presents the results and discussion. Finally, last section 
conclude the work along with the proposed future work.  

2. METHODS 

To prove that a deliberative and reactive hybrid control system can work well for an 
autonomous delivery rover robot, a mission was conducted. In this mission, hybrid control 
system-based robot are designed to move the three colored objects, i.e., red, green, blue, 
from their respective positions to the goal cells, respectively. World or search area in the form 
of 7 x 3 grid arena. Positions of the object are randomly generated offline as the knowledge 
of the world. One randomly placed prior to the run box shall be unknown to the system. In 
completing its mission, robot searchs objects by using A* algorithm. The robot shall back to 
the home or start point after finishing the task. Figure 1(a) depicts the search area of the 
mission while Figure 1(b) shows the layout of the search area with objects and obstacle that 
used in the mission.  
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(a)                                        (b) 

Figure 1. (a) Design of The Search Area in The Mission, (b) Layout of The Search Area with 
Objects and Obstacle that Used in The Mission 

 

2.1 World Model Design  
The World Model used in this mission is a 7 x 3 square-based grid area, where each grid is 
marked with the black line. Each grid is a square of 20 x 20cm. The three colored objects, i.e., 
red, green, blue, is a cylinder with diameter of 3cm. The obstacle is a block with a size of 15 
x 15 x 30cm. From Figure 1, circles represent the objects while rectangles represent the goal 
position for each object. The state of each grid is indicated by an index, starting from indexes 
{1.1} to {3.7}. The start state of the robot is {2,1} and the goal state is {1,7}, {2,7}, and 
{3,7}. The position of the object is generated offline randomly where in this mission the 
object's position is indexed {3,4}, {1,5}, and {2,5}. The pair of state positions and goal states 
of each object were listed in Table 1. 

Table 1. State of The Object and Goal 

Object Color Position State Goal State 
Red {3,4} {3,7} 
Green {2,5} {2,7} 
Blue {1,5} {1,7} 

 
2.2  Proves of The A* Algorithm 
In A* algorithm, the function will use the Euclidean Distance as a function and the cost of 
being taken as the G function. In this mission, the G value uses an encoder value in the degree 
where the cost for straight motion is 640° while the cost for diagonal movements is 870°. By 
knowing the value of G and the value of H, the A* algorithm can be used for path generating. 
Before the A* algorithm is implemented into the robot, it first proved in the LabVIEW simulation 
by using the two-dimentional array world to display the generated path. The initial world map 
used is depicted in Figure 2(a). 
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In order to see whether the A* algorithm can work properly, an experiment is conducted where 
the start state is {2,1} and the goal state is {3,4}. The obstacle is not given in the search area. 
Based on the theory of A* algorithm and the value of F, the path that should be generated is 
{2,1}, {2,2}, {2,3}, {3,4}. The simulation results of A* algorithm are showed in Figure 2(b). 
From the simulation results, it can be seen that the A* algorithm program can produce the 
right path. The second experiment uses the same start state and goal state but an obstacle 
was placed in the search area, in which the obstacle position is {2,3}. Based on the theory of 
A* algorithm and the value of F, the path that should be generated is {2,1}, {2,2}, {3,2}, 
{3,3}, {3,4}. The result proves that the A* algorithm program can produce the path correctly 
by avoiding the obstacle as shown in Figure 2(c). 

 

(a)                                             (b)                                            (c) 

Figure 2. (a) Initial World Map for LabVIEW A* Simulation, (b) LabVIEW A* Simulation 
without Obstacle, (c) LabVIEW A* Simulation with Obstacle 

 
2.3  Hybrid Control System Structure 
The control system structure used in this mission is designed based on the Autonomous Robot 
Architecture (AuRA) structure. Figure 3 presents the hybrid control system structure 
implemented in the mission where the structure can be divided into deliberative layer for the 
planner and reactive layer for the sensory system and actuating system. The planner layer is 
divided into three subsystems as follows: 
1. Mission Planner 

Mission planner responsible for setup the state, including start state, goal state, and rules 
for navigators. The mission planner also setup the sub-goals and determine the rules for 
using A* algorithm. The mission planner determines the first object to be taken between 
the three existing objects. To determine this first object, the mission planner calculates 
the cost from the start state to the sub-goal state and the cost of the sub-goal state to 
the goal state. This cost calculation is done for all three objects to be compared where 
the object with the smallest cost will be selected as the first object to be taken. The same 
procedure is carried out by a mission planner to determine the second and third objects. 
If an obstacle is detected, the mission planner will activate the rule for path changes, 
which will be done through A* algorithm by the navigator. When the robot has completed 
retrieval of an object, the mission planner will activate the rule to generate the next path, 
which is done by the navigator using the A* algorithm. If the robot has completed its 
mission, the mission planner will activates the rule to generate the path back to home or 
start position, which is done by the navigator using A* algorithm. 
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2. Navigator 
Navigator was implemented for path generating using the A* algorithm. Navigator 
performs path generating based on start state information, goal state, and rule from 
mission planner. The Navigator will do the path updating based on the information or 
requests from the mission planner. The actions list generated by the navigator will be 
informed to the pilot. 

3. Pilot 
The pilot generates behavior based on the actions list generated by the navigator. The 
pilot also carry out monitoring action to monitor the movement and position produced, 
whether it still matches the path or the actions list provided by the navigator. If there is 
an obstacle or a condition occurs that does not allow the robot to continue its mission, 
the pilot will send information to the navigator in order to request the new path or new 
actions list. 

 

 

Figure 3. Hybrid Control System Structure 

 
Reactive system generates effective motion. Reactive systems produce movements based on 
the behavior information from the pilot. The reactive system also responsible to organize or 
negotiate between existing behaviors. The sensory system produces information in the form 
of sense results towards the surrounding environment. The reading value from the sensor is 
used as the basis for motion control, such as effective movement control, movement control 
when there is an obstacle, and other motion control. The actuating system used as a driver 
on the motor system based on the driving commands. 
 
2.4  Robot Structure 
The robot used in the mission is embedded robot EV3 from Mindstorm. The robot structure 
used in this mission is depicted in Figure 4(a) and 4(b) for the first and second design of the 
robot, respectively. The first design has a weaknesses, especially in the gripper, where in some 
conditions, the object can be released from the gripper. For this reason, redesign of the gripper 
is done to ensure the object stays inside the gripper until the release or open grip process. 
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The value of the motor power for the gripper also have to be given properly so that the object 
will not separated from the gripper. 

The sensors used in the robot are as follows: 
1. Encoder Sensor 

The encoder will produce a value which is the distance of movement. Based on the value 
of the encoder, the robot will produce accurate movements from one grid to another. 

2. Gyro Sensor 
Gyro Sensor measures the robot's rotational motion and changes in its orientation. Gyro 
sensor ensures the robot moves in the proper direction so that it can minimize the 
movement errors that occurs. 

3. Ultrasonic Sensor 
Ultrasonic Sensor is used to detect the obstacle. Ultrasonic sensors are installed on the 
front of the robot in which the detection range is more focused and not too wide so it is 
easier to detect the obstacle. 

4. Light Sensor 
In this robot, two light sensors were used. Light sensors are used to detect black lines on 
the grid when doing position correction or positioning so that the robot's direction of 
movement is accurate and further reduces the accumulated errors of robot movements. 

 

  
(a)                                                      (b) 

Figure 4. (a). First Design of The Robot (b). Second Design of The Robot 

 
2.5  Design of Layer Structure 
The layer structure used in the mission are as follows: 
1. Mission Planner 

Before starting the mission, mission planner sets up the start and goal state, as well as 
the rules that will be used. To determine the order of retrieval of objects, the mission 
planner calculates costs for all remaining objects. Objects with minimum cost will be taken 
first among the remaining objects. Further, the mission planner will updates the start 
position along with the position of the object's goal and informs the navigator. The same 
procedure will be carried out by the mission planner until all objects have been taken. If 
mission planner receives information from the navigator about an obstacle, the mission 
planner will activates the rule, further the navigator performs paths regenerating using A* 
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algorithm. If all objects have been moved, the mission planner will updates the starting 
position and goal to the home area. Figure 5(a) presents the flowchart of mission planner 
program structure. 

Setup Start and Goal 
State, Rules

Calculate Total Cost 
of The Remaining 

Objects

Decide I (I = 1,2,3) 
Object to be Taken

Update Start and 
Goal Position for I (I 
= 1,2,3) Object to 

Navigator

Inform Navigator for 
Path Regenerating 

using A*

Any Obs tac le 
Inform ation from 

Navigator?

No

Yes

i (I = 1,2,3) Object 
Mission Finished

All Object 
Mission 

Finished?

Update Start and 
Goal Position to 

Home Area

No

Yes

                      

Calculate The F 
Function Based on H 

and G Value

Update The Open 
Array

Choose The Smallest 
F Value to be The 

Next Current Posit ion

Save in Path Array

Waiting A* Update 
Rule from Mission 

Planner

Any Obs tac le 
Inform ation from 

Pilot?

Yes

Close The Grid where 
The Obstacle 

Detected

Path Generating 
Request from Mission 

Planner

Goal Found?

Update Information 
to Mission Planner

No

No

Yes

 

(a)                                                                              (b) 

Figure 5. (a) Mission Planner Program Structure (b) Navigation Program Structure 

2. Navigator 
When the navigator receives request for paths generating from the mission planner, 
the navigator will measures F value based on the H and G values of the eight grids 
around the current position. The Navigator will updates the open array. Further, the 
navigator will select the grid with the smallest F value as the next current position. 
When the navigator receives information from the pilot regarding an obstacle, the 
navigator will informs the mission planner and waits for the path replanning request 
from the mission planner. After receiving the path replanning request, the navigator 
will performs a path generating using A* algorithm, by entering the grid where the 
obstacle is found in the close list. When a goal has been found, the navigator will 
updates the information to the mission planner and waits for the information on the 
start and the next goal state from the mission planner. Figure 5(b) displays the 
flowchart of navigation program structure. 

3. Pilot 
After the pilot receives the path list or action list from the navigator, the pilot checks 
the state position. Further, the pilot will generates the behavior by giving an angle 
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value for the gyro and the cost value for the encoder. In the process, the pilot updates 
the state position to the navigator. When an obstacle is detected, the pilot will sends 
the state position of the obstacle to the navigator and waits for the next path or action 
list. If the state has reached the end of the path or action list, the pilot will stop the 
behavior and waits for the path information or the next action list from the navigator. 
Flowchart of pilot program structure is shown in Figure 6. 

Receive Path List or 
Action List from 

Navigator

Check The State 
Position

Generate Behav ior by 
Provi ding T he Angle Value 
for Gyro and Cos t Value for 

Encoder

Update The State 
from Encoder Value

Stop Motion if The 
State Already in The 

End of Path

Waiting for The Next 
Path or Act ion from 

Navigator

Send Obstacle State 
to Navigator

Obstacle 
Detected

?

No

Yes

 

Figure 6. Pilot Program Structure 

 
2.6  Design of Reactive System 
The structure of the reactive system used in the mission is demonstrated in Figure 7 where S 
refers to suppress and I refers to inhibit.  
 

Pilot

Ultrasonic

Encoder

Light 
Sensor

Gyro

Halt

Position

Positioning

Angular 
Motion

Forward 
Motion

Grasp

Pilot

Motor 
Drive

S S I

 

Figure 7. Reactive System 



Eddy Wijanto 

ELKOMIKA – 10 

 

Open Grip

Close Grip

S

S

Motor Velociry 20 
Become 0

Motor Velocity -20 
Become 0

Motor 
Gripper

 

Figure 8. Grasp Behavior 
 
The negotiators used in this reactive system are as follows: 
1. When the angular motion behavior is executed, it suppresses forward motion 
2. When positioning behavior is executed, it suppresses other motion behavior 
3. When the obstacle is detected, the halt behavior will be executed where this behavior will 

inhibits the entire reactive system until the next behavior generating from the pilot. 
 
The velocity used to drive the gripper motor is 20 where the motor velocity decreases from 20 
to 0 to open the grip and from -20 to 0 to close the grip. The grasp behavior is depicted in 
Figure 8. 
 

Positioning 
Motion Hold, 1 if 
No Positioning, 0 

if Positioning

Angular Motion 
Hold, 1 if No 

Positioning, 0 if 
Positioning

Constant Speed 
(Value of 20)

Speed for 
Angular Motion

Speed for 
Positioning

Obstacle Hold, 1 
if No Obstacle, 0 
if Any Obstacle

X + X + X
Speed of Motor A 

and B

 

Figure 9. Forward Motion Behavior 
 
In the forward motion behavior, the motor speed used is 20. Several things that affect the 
forward motion behavior, including: 
1. When an obstacle is detected, the halt behavior will works and gives a multiplier value of 

0 to the motor speed in forward motion 
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2. When the angular motion behavior works, this behavior will produces a multiplier value of 
0 to the motor speed in forward motion 

3. When the positioning behavior works, this behavior will produces a multiplier value of 0 
to the motor speed in forward motion 

Figure 9 presents the forward motion behavior. 
 

Gyro
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Direction 

Value

- X

Speed of 
Motor A

Speed of 
Motor B

Gain Value
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6, The Angular Motion Hold is 

1, Else is 0

1 X
 

Figure 10. Angular Motion Behavior 
 
The mechanism of the positioning behavior used in the mission is the robot will move straight 
until both light sensors detect the black line, then the gyro and encoder will be reset. The 
robot will backoff until the encoder value reaches 200. In order to ensure the robot position in 
the middle of the grid, positioning is also done by angular turn 90 degree counter clockwise, 
then the robot will move straight until both light sensors detect the black line. Further, the 
gyro and encoder will be reset. The robot will backoff until the encoder value reaches 200. 
The robot then makes angular motion at 90 degrees clockwise and the gyro sensor is reset. 
The positioning behavior is conducted at start condition and after getting the object. The 
positioning behavior is displayed in Figure 11. 
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Figure 11. Angular Motion Behavior 
 

Encoder

Next Step 
Cost

>
Position 
State 

Update

       

Ultrasonic 
Sensor

15 Cm

<
Update 

Obstacle 
Position

Obstacle Hold Value 0, 
Ask Deliberative Layer 

for The New Path

 

(a)                                                                           (b) 

Figure 12. (a) Position Behavior, (b) Halt Behavior 
 

Position Behavior is the part that plays a role in providing position state updates to the pilot. 
When the encoder reading value is greater than the next cost, the position state will be 
updated. Figure 12(a) presents the position behavior. If the value of the ultrasonic sensor is 
less than 15 cm, which indicates an obstacle, the halt behavior will be activated. Halt behavior 
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will stop or inhibit all existing reactive systems. The obstacle position is updated to the pilot, 
then the pilot will informs the navigator and waits for the new path list. The halt behavior is 
depicted in Figure 12(b). 

3. RESULTS AND DISCUSSION 

In order to prove that the hybrid deliberative and reactive control system proposed in this 
paper can be implemented for autonomous stuff-delivery robot, we performed 100 test runs 
on the physical robots used in the mission with five different scenario and world model, in 
which 10 test runs for every scenario. For each scenario, we randomly created obstacle. The 
robot completely finished the delivery process for each scenario and test runs with a little time 
difference according to the scenario. For the clarity of analysis, in this section we used the 
world model defined in the Section 2. Table 2 summarize the state of each step while Table 3 
reveals the object collection time. 
 

Table 2. State of The Robot 

Mission Starting 
State 

Route State Goal State 

Go to The First Sub-Goal {2,1} {2,1}, {2,2}, {2,3}, {2,4}, {2,5}  {2,5} 
Go to The First Goal {2,5} {2,5}, {2,6}, {2,7}  {2,7} 
Go to The Second Sub-Goal {2,7} {2,7}, {2,6}, {3,6}, {3,5}, {3,4}  {3,4} 
Go to The Second Goal {3,4} {3,4}, {3,5}, {3,6}, {3,7}  {3,7} 
Go to The Third Sub-Goal {3,7} {3,7}, {3,6}, {2,6}, {1,6}, {1,5}  {1,5} 
Go to The Third Goal {1,5} {1,5}, {1,6}, {1,7}  {1,7} 
Avoid The Obstacle  {1,7} {1,7}, {1,6}, {2,6}, {2,5}  {2,5} 
Go Home {2,5} {2,5}, {2,4}, {2,3}, {2,2}, {2,1}  {2,1} 

Table 3. Object Collection Time 

Scenario Average Time (Second) 
First 238 
Second 227 
Third 232 
Fourth 218 
Fifth 245 

 
The results observed in the testing of the mission are as follows: 
1. Go to The First Object (First Sub-Goal) 

This part leaves us with three objects for which the mission planner must first calculate 
the object cost. To determine the order in which objects should be retrieved, mission 
planner calculates the cost of all remaining objects. From Figure 2(b), we can see that the 
position of the blue object is {1,5}, the position of the green object is {2,5}, and the 
position of the red object is {3,4}. Among the remaining objects, the object with the 
lowest cost is retrieved first. The mission planner works and can determine the object 
acquisition order based on the calculation of the function value F where the minimum F 
value between the start or home position {2,1} and the three objects is the F value. of 
the Green object at position {2.5}. In this section, the navigator is working correctly and 
can perform path generation using the  A* algorithm with route states {2,1}, {2,2}, {2,3}, 
{2,4}, {2.5}. Pilots also work well and can generate behavior based on paths or action 
lists generated by the navigator, which is positioning, forward motion, and grasp behavior.  
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2. Go to The First Goal 
After moving to the first sub-goal {2,5} and grabbing the green object, the robot has to 
carry the green object to the first goal {2,7}, where the pilot updates the start and end 
positions. Then, motions are generated based on paths that are forward motion and 
release behavior, with rouse states at {2,5}, {2,6}, {2,7}. This part shows that the pilot 
can update the start and end positions and perform the proper behavior.  

3. Go to The Second Object (Second Sub-Goal) 
This part leaves us with two objects where the mission planner have to calculate the object 
cost between the blue and red objects. From Figure 2(b), we can found that the position 
of the blue object is {1,5} and the position of the red object is {3,4}. Among the remaining 
objects, the object with the lowest cost is retrieved first. The mission planner works and 
can determine the object acquisition order based on the calculation of F value where the 
smallest F value between the last position from the previous step at {2,7} and the both 
objects is the red object in position {3,4}. This section also shows that the navigator is 
functioning properly and can do the path generating by using A* algorithm with the route 
state of {2,7}, {2,6}, {3,6}, {3,5}, {3,4}. Pilots have also worked properly and can do the 
behavior generating based on paths or action lists generated by the navigator, which is 
positioning, forward motion, and grasp behavior. It proves that the communication 
between mission planner, navigator, and pilot has worked well in which after the first 
object has been taken and placed in the goal, the pilot provided information to the 
navigator then forwarded it to the mission planner. 

4. Go to The Second Goal 
After reaching the second sub-goal {3,4} and grabbing the red object, the robot must 
move it to the second goal {3,7}, where the pilot need to update the start and goal 
positions and generate the forward motion and release behavior based on paths with the 
route state of {3,4}, {3,5}, {3,6}, {3,7}. This section shows that the pilot was successful 
and that it was able to update the start and goal locations. 

5. Go to The Third Object (Third Sub-Goal) 
There is only one object left in this part. This section shows that the navigator is working 
properly and can do the path generating by using A* algorithm between the last position 
from the previous step at {3,7} and the blue objects at position {1,5}, with the route state 
of {3,7}, {3,6}, {2,6}, {1,6}, {1,5}. Pilots also work properly and can generate behavior  
based on paths or action lists generated by the navigator, which is positioning, forward 
motion, and grasp behavior. This proves that the communication between mission 
planners, navigators, and pilots functioned well. After the second object was picked up 
and placed on target, the pilot provided information to the navigator and further forwarded 
it to the mission planner.   

6. Go to The Third Goal 
After reaching the third sub-goal {1,5} and grabbing the blue object, the robot should 
move the object to the third goal {1,7}. The pilot needs to update the start and end 
positions and perform the behavior generating based on paths, which is forward motion 
and release behavior, with the route state of {1,5}, {1,6}, {1,7}. This part presents that 
the pilot has functioned well and can updated the start and goal positions.  

7. Avoid The Obstacle  
After completing the mission, the robot must return home, which is from position at {1,7} 
to home position at {2,1}. In this scenario there is an obstacle at {1,4}. This section 
proved the reactive mechanism has functioned well, when an obstacle is detected, the 
pilot can provide information to the mission planner through the navigator. The mission 
planner uses the A* algorithm to provide route regeneration information to the navigator. 
The navigator can generate a new path to avoid the presence of obstacles, and the pilot 
can follow the navigator's new path using the new route states of {1,7}, {1,6}, {2,6}, 
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{2,5}. To avoid diagonal movements near the obstacle, the mission planner gives a rule 
for navigator in the path generating in which when the obstacle is detected, (X), (X-1), 
and (X+1) positions are entered into the close list and both will return to the open list 
after the robot does not detect an obstacle again, where X is the position state of the 
obstacle.  

8. Go Home 
After avoiding the obstacle, in this section, the mission planner can update the start and 
goal position to the home area, which is the last position from previous step at {2,5} to 
the home position at {2,1}. The Navigator successfully generated an action list based on 
information of start and home position by using the A* algorithm with the route state of 
{2,5}, {2,4}, {2,3}, {2,2}, {2,1}. The pilot has been able to produce behavior according 
to the action list from the navigator, which is forward and positioning behavior.  

Further, from Table 3, it can be seen that the average time to finish each of five scenarios 
implemented in the mission, there is only a slight time difference. The differences come from 
the position of the obstacles that effect the cost function of each sub goal and goal itself. 
Overall, from the experiment of five scenarios, the hybrid system can finish the mission 
successfully, without being affected by the position of the obstacle. These results prove that 
the hybrid system can conduct the correct plan and in the same time can react to the unknown 
environment situation according to the obstacle in the mission. 

 

4. CONCLUSIONS 

From the design and testing of the Deliberative and Reactive Hybrid Control System for 
Autonomous Stuff-Delivery Robot Rover, it can be concluded that hybrid systems which are a 
combination of deliberative systems and reactive systems can minimize the weaknesses of 
each system. With this hybrid system, the stuff-delivery process can be achieved in accordance 
with the plan and can react to conditions that were not previously known in planning, such as 
the obstacle. From the design and testing, it has been proven that the A* algorithm can be 
implemented in the embedded systems, such as the EV3 Mindstorm Robot with some 
adjustments, for example, using one dimentional array and cluster. Robots can perform a 
search mechanism through paths generating using the A* algorithm. Further works will 
focused on more complex world scenario and increasing the efficiency of the hybrid control 
system. 
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