
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika

ISSN(p): 2338-8323 | ISSN(e): 2459-9638 | Vol. 11 | No. 1 | Halaman 1 - 15
DOI : http://dx.doi.org/10.26760/elkomika.v11i1.1 Januari 2023

ELKOMIKA – 1

Design of Deliberative and Reactive Hybrid
Control System for Autonomous

Stuff-Delivery Robot Rover

EDDY WIJANTO

Program Studi Teknik Elektro, Universitas Kristen Krida Wacana, Indonesia
Email: eddy.wiyanto@ukrida.ac.id

Received 22 September 2022 | Revised 26 Oktober 2022 | Accepted 7 November 2022

ABSTRAK

Saat ini, robot otonom memiliki peranan signifikan di berbagai bidang. Robot
otonom meningkatkan efektivitas dan produktivitas sekaligus menurunkan risiko
dan tingkat kesalahan secara signifikan. Dua paradigma dapat digunakan saat
merancang robot otonom, yaitu paradigma reaktif dan deliberatif. Paper ini
merancang sistem kontrol hybrid untuk menggabungkan elemen terbaik dari
sistem kontrol deliberatif dan reaktif untuk robot pengiriman otonom. Model
tersebut dibuktikan dengan misi untuk memindahkan tiga objek berwarna, dari
posisinya ke tujuan. Dari perancangan dan pengujian, sistem hybrid dapat
meminimalisir kelemahan dari masing-masing sistem, sehingga proses pengiriman
barang dapat tercapai sesuai dengan rencana dan dapat bereaksi terhadap kondisi
yang sebelumnya tidak diketahui dalam perencanaan, seperti hambatan.
Penggunaan sistem hybrid membuka kemungkinan untuk merancang sebuah
mobile robot otonom yang dapat beroperasi di lingkungan apapun.

Kata kunci: deliberative, reactive, hybrid, autonomous, robot rover

ABSTRACT

Recently, autonomous robots have become increasingly significant in numerous
fields. Robots with autonomy increase effectiveness and productivity while
significantly lowering risk and error rates. Two paradigms can be used when
creating an autonomous robot, namely reactive and deliberative paradigm. This
paper proposes a hybrid control system to combine the best elements of
deliberative and reactive control system for an autonomous delivery robot rover.
The model was proved with a mission to move the three colored objects, from
their respective positions to the goal cells. From the design and testing the hybrid
systems can minimize the weaknesses of each system, so that the stuff-delivery
process can be achieved in accordance with the plan and can react to conditions
that were not previously known in planning, such as the obstacle. The use of a
hybrid system opens up the possibility of designing an autonomous mobile robot
that can operate in any environment.

Keywords: deliberative, reactive, hybrid, autonomous, robot rover

Eddy Wijanto

ELKOMIKA – 2

1. INTRODUCTION

One of the most crucial needs for any robotics application is robot autonomy. While designing
and creating autonomous robots, engineers must overcome many challenges, and fully robot
autonomy is still a work in progress (Asokan, 2016). Because autonomous robots are
complex systems, many different software components must interact and work together. Since
robots are getting more human-like, they are developing into significant systems that must
adhere to safety standards, including logical, temporal, and real-time constraints (Panigrahi,
et al, 2021). An important research area of autonomous mobile robotics is the creation of
companions that live in our environment and perform tasks that help us in our daily lives
(Ingrand, et al, 2017).

Two paradigms, namely the deliberative and reactive paradigms, can be used in the design of
autonomous robots (Murphy, 2000). The fundamental feature of the reactive paradigm is
all activities are carried out through behaviors (Wang, et al, 2017). The direct mapping of
sensory inputs to a series of motor activities that are then used to carry out a task resulting in
behaviors. The reactive paradigm no longer includes the plan element (Tobaruela, et al,
2017). There is no planning carried out based on a global map or model of the environment
in reactive architectures, which are made up of a collection of reactive behaviors. Sensing and
acting go hand in hand in these reactive activities. The reactive paradigm has advantages such
as being applicable to robots with limited and inexpensive hardware resources, low complexity,
goal convergence, ease of adaptation to changing conditions, and the ability to safely navigate
a robot through completely unknown environments with unpredictable moving obstacles
(Murphy, 2000).

Behavior-based robots have become well-known in a number of fields in recent years.
Applications for behavior-based robotics have expanded in fields like demining, search and
rescue, office automation, and health care, where they are progressively replacing people in
labor-intensive and risky jobs (Hassani, et al, 2018). The reactive paradigm and a variety
of related subjects, including its history, guiding principles, practical applications, and ongoing
research, were covered in (Lazzeri, et al, 2018). In (Savage, et al, 2021), three
genetically evolved reactive obstacle-avoidance behaviors for mobile robots were reported.
These behaviors were selected using genetic algorithms to enable mobile robots to react to
obstacle most effectively as they move toward their target. Three approaches—a traditional
method based on potential fields, finite state machines (FSM), and probabilistic finite state
machines (PFSM) based on hidden Markov models (HMM)—were examined (Savage, et al,
2021). A mobile robot must also sense its surroundings, perceive its working environment,
plot a trajectory, and respond properly depending on the information as an intelligent system.
Robotic control architectures define the combination of these capabilities that should be used
to create and advance autonomous navigation (Alatise, et al, 2020).

Experimenting with decision-making models using a deliberative architecture requires the
availability of engineering tools that enable rapid development, deployment, and evaluation
(Ingrand, et al, 2017). Faced with various open environments and performing various tasks
and interactions, autonomous robots require distinct considerations to complete their missions
(Gascueña, et al, 2015). Further research in (Avram, et al, 2022) present a deliberative
framework aimed at coordinating the automation of behavioral processes of robotic platforms
intended for operation in harsh environments. Between sensing and acting, deliberative
architectures have a planning stage. No action can be taken without planning, which is based
on a map of the environment that the sensors have collected (Ibáñez, et al, 2021).

Design of Deliberative and Reactive Hybrid Control System for Autonomous Stuff-Delivery Robot Rover

ELKOMIKA – 3

Many intralogistics companies such as manufacturing, warehouses, cross-docking, terminals,
and hospitals are now using autonomous mobile robots. Autonomous operation under dynamic
conditions is possible (Cho, et al, 2017). Unlike automated guided vehicle (AGV) systems
that rely on a central entity for all AGV planning, routing, and dispatch decisions, autonomous
mobile robots can interact and negotiate independently with other resources, such as machines
and systems (Fragapane, et al, 2021). Our previous work found that a negotiator can be
implemented to realize a fully autonomous mobile robot based on the behavior of the reactive
system (Wijanto, 2022).

Understanding how to integrate decision-making capabilities into mobile robots is essential for
designing robots that can manifest high-level intelligence in real-world settings. In hybrid
designs, reactive behaviors are combined with deliberative motion plans, as in the other two
models. When deliberative systems compared with reactive architectures, it finds that the
former work in a more predictable manner, depend more heavily on an accurate and
comprehensive representation of the world, and produce robot trajectory optimizations.
Reactive architectures, on the other hand, may function without a model of the world and are
computationally considerably simpler. They also respond more quickly to dynamic changes in
the environment. By enabling a high-level deliberative planner to tailor the robot's behaviors
to the task at hand, known or projected external variables, and available robotic resources,
this gives a reactive robot more flexibility.

In this paper, a hybrid control system is designed to combine the best elements of the previous
two models, i.e., deliberative and reactive control system. Further, this hybrid system is
designed for autonomous stuff-delivery robot rover. The implementation of the hybrid system
brings a potential to design a fully autonomous mobile robot in any conditions, such as different
number and position of stuff object, different number and position of obstacles, and different
home position.

The remainder of this paper is organized as follows. Section 2 describes the methods used in
this research, including design of the world model and proves of the a* algorithm, the control
system structure, the structure of the robot, the design of the layer structure, and the design
of the reactive system. Section 3 presents the results and discussion. Finally, last section
conclude the work along with the proposed future work.

2. METHODS

To prove that a deliberative and reactive hybrid control system can work well for an
autonomous delivery rover robot, a mission was conducted. In this mission, hybrid control
system-based robot are designed to move the three colored objects, i.e., red, green, blue,
from their respective positions to the goal cells, respectively. World or search area in the form
of 7 x 3 grid arena. Positions of the object are randomly generated offline as the knowledge
of the world. One randomly placed prior to the run box shall be unknown to the system. In
completing its mission, robot searchs objects by using A* algorithm. The robot shall back to
the home or start point after finishing the task. Figure 1(a) depicts the search area of the
mission while Figure 1(b) shows the layout of the search area with objects and obstacle that
used in the mission.

Eddy Wijanto

ELKOMIKA – 4

(a) (b)

Figure 1. (a) Design of The Search Area in The Mission, (b) Layout of The Search Area with
Objects and Obstacle that Used in The Mission

2.1 World Model Design
The World Model used in this mission is a 7 x 3 square-based grid area, where each grid is
marked with the black line. Each grid is a square of 20 x 20cm. The three colored objects, i.e.,
red, green, blue, is a cylinder with diameter of 3cm. The obstacle is a block with a size of 15
x 15 x 30cm. From Figure 1, circles represent the objects while rectangles represent the goal
position for each object. The state of each grid is indicated by an index, starting from indexes
{1.1} to {3.7}. The start state of the robot is {2,1} and the goal state is {1,7}, {2,7}, and
{3,7}. The position of the object is generated offline randomly where in this mission the
object's position is indexed {3,4}, {1,5}, and {2,5}. The pair of state positions and goal states
of each object were listed in Table 1.

Table 1. State of The Object and Goal

Object Color Position State Goal State
Red {3,4} {3,7}
Green {2,5} {2,7}
Blue {1,5} {1,7}

2.2 Proves of The A* Algorithm
In A* algorithm, the function will use the Euclidean Distance as a function and the cost of
being taken as the G function. In this mission, the G value uses an encoder value in the degree
where the cost for straight motion is 640° while the cost for diagonal movements is 870°. By
knowing the value of G and the value of H, the A* algorithm can be used for path generating.
Before the A* algorithm is implemented into the robot, it first proved in the LabVIEW simulation
by using the two-dimentional array world to display the generated path. The initial world map
used is depicted in Figure 2(a).

Design of Deliberative and Reactive Hybrid Control System for Autonomous Stuff-Delivery Robot Rover

ELKOMIKA – 5

In order to see whether the A* algorithm can work properly, an experiment is conducted where
the start state is {2,1} and the goal state is {3,4}. The obstacle is not given in the search area.
Based on the theory of A* algorithm and the value of F, the path that should be generated is
{2,1}, {2,2}, {2,3}, {3,4}. The simulation results of A* algorithm are showed in Figure 2(b).
From the simulation results, it can be seen that the A* algorithm program can produce the
right path. The second experiment uses the same start state and goal state but an obstacle
was placed in the search area, in which the obstacle position is {2,3}. Based on the theory of
A* algorithm and the value of F, the path that should be generated is {2,1}, {2,2}, {3,2},
{3,3}, {3,4}. The result proves that the A* algorithm program can produce the path correctly
by avoiding the obstacle as shown in Figure 2(c).

(a) (b) (c)

Figure 2. (a) Initial World Map for LabVIEW A* Simulation, (b) LabVIEW A* Simulation
without Obstacle, (c) LabVIEW A* Simulation with Obstacle

2.3 Hybrid Control System Structure
The control system structure used in this mission is designed based on the Autonomous Robot
Architecture (AuRA) structure. Figure 3 presents the hybrid control system structure
implemented in the mission where the structure can be divided into deliberative layer for the
planner and reactive layer for the sensory system and actuating system. The planner layer is
divided into three subsystems as follows:
1. Mission Planner

Mission planner responsible for setup the state, including start state, goal state, and rules
for navigators. The mission planner also setup the sub-goals and determine the rules for
using A* algorithm. The mission planner determines the first object to be taken between
the three existing objects. To determine this first object, the mission planner calculates
the cost from the start state to the sub-goal state and the cost of the sub-goal state to
the goal state. This cost calculation is done for all three objects to be compared where
the object with the smallest cost will be selected as the first object to be taken. The same
procedure is carried out by a mission planner to determine the second and third objects.
If an obstacle is detected, the mission planner will activate the rule for path changes,
which will be done through A* algorithm by the navigator. When the robot has completed
retrieval of an object, the mission planner will activate the rule to generate the next path,
which is done by the navigator using the A* algorithm. If the robot has completed its
mission, the mission planner will activates the rule to generate the path back to home or
start position, which is done by the navigator using A* algorithm.

Eddy Wijanto

ELKOMIKA – 6

2. Navigator
Navigator was implemented for path generating using the A* algorithm. Navigator
performs path generating based on start state information, goal state, and rule from
mission planner. The Navigator will do the path updating based on the information or
requests from the mission planner. The actions list generated by the navigator will be
informed to the pilot.

3. Pilot
The pilot generates behavior based on the actions list generated by the navigator. The
pilot also carry out monitoring action to monitor the movement and position produced,
whether it still matches the path or the actions list provided by the navigator. If there is
an obstacle or a condition occurs that does not allow the robot to continue its mission,
the pilot will send information to the navigator in order to request the new path or new
actions list.

Figure 3. Hybrid Control System Structure

Reactive system generates effective motion. Reactive systems produce movements based on
the behavior information from the pilot. The reactive system also responsible to organize or
negotiate between existing behaviors. The sensory system produces information in the form
of sense results towards the surrounding environment. The reading value from the sensor is
used as the basis for motion control, such as effective movement control, movement control
when there is an obstacle, and other motion control. The actuating system used as a driver
on the motor system based on the driving commands.

2.4 Robot Structure
The robot used in the mission is embedded robot EV3 from Mindstorm. The robot structure
used in this mission is depicted in Figure 4(a) and 4(b) for the first and second design of the
robot, respectively. The first design has a weaknesses, especially in the gripper, where in some
conditions, the object can be released from the gripper. For this reason, redesign of the gripper
is done to ensure the object stays inside the gripper until the release or open grip process.

Design of Deliberative and Reactive Hybrid Control System for Autonomous Stuff-Delivery Robot Rover

ELKOMIKA – 7

The value of the motor power for the gripper also have to be given properly so that the object
will not separated from the gripper.

The sensors used in the robot are as follows:
1. Encoder Sensor

The encoder will produce a value which is the distance of movement. Based on the value
of the encoder, the robot will produce accurate movements from one grid to another.

2. Gyro Sensor
Gyro Sensor measures the robot's rotational motion and changes in its orientation. Gyro
sensor ensures the robot moves in the proper direction so that it can minimize the
movement errors that occurs.

3. Ultrasonic Sensor
Ultrasonic Sensor is used to detect the obstacle. Ultrasonic sensors are installed on the
front of the robot in which the detection range is more focused and not too wide so it is
easier to detect the obstacle.

4. Light Sensor
In this robot, two light sensors were used. Light sensors are used to detect black lines on
the grid when doing position correction or positioning so that the robot's direction of
movement is accurate and further reduces the accumulated errors of robot movements.

(a) (b)

Figure 4. (a). First Design of The Robot (b). Second Design of The Robot

2.5 Design of Layer Structure
The layer structure used in the mission are as follows:
1. Mission Planner

Before starting the mission, mission planner sets up the start and goal state, as well as
the rules that will be used. To determine the order of retrieval of objects, the mission
planner calculates costs for all remaining objects. Objects with minimum cost will be taken
first among the remaining objects. Further, the mission planner will updates the start
position along with the position of the object's goal and informs the navigator. The same
procedure will be carried out by the mission planner until all objects have been taken. If
mission planner receives information from the navigator about an obstacle, the mission
planner will activates the rule, further the navigator performs paths regenerating using A*

Eddy Wijanto

ELKOMIKA – 8

algorithm. If all objects have been moved, the mission planner will updates the starting
position and goal to the home area. Figure 5(a) presents the flowchart of mission planner
program structure.

Setup Start and Goal
State, Rules

Calculate Total Cost
of The Remaining

Objects

Decide I (I = 1,2,3)
Object to be Taken

Update Start and
Goal Position for I (I
= 1,2,3) Object to

Navigator

Inform Navigator for
Path Regenerating

using A*

Any Obs tac le
Inform ation from

Navigator?

No

Yes

i (I = 1,2,3) Object
Mission Finished

All Object
Mission

Finished?

Update Start and
Goal Position to

Home Area

No

Yes

Calculate The F
Function Based on H

and G Value

Update The Open
Array

Choose The Smallest
F Value to be The

Next Current Posit ion

Save in Path Array

Waiting A* Update
Rule from Mission

Planner

Any Obs tac le
Inform ation from

Pilot?

Yes

Close The Grid where
The Obstacle

Detected

Path Generating
Request from Mission

Planner

Goal Found?

Update Information
to Mission Planner

No

No

Yes

(a) (b)

Figure 5. (a) Mission Planner Program Structure (b) Navigation Program Structure

2. Navigator
When the navigator receives request for paths generating from the mission planner,
the navigator will measures F value based on the H and G values of the eight grids
around the current position. The Navigator will updates the open array. Further, the
navigator will select the grid with the smallest F value as the next current position.
When the navigator receives information from the pilot regarding an obstacle, the
navigator will informs the mission planner and waits for the path replanning request
from the mission planner. After receiving the path replanning request, the navigator
will performs a path generating using A* algorithm, by entering the grid where the
obstacle is found in the close list. When a goal has been found, the navigator will
updates the information to the mission planner and waits for the information on the
start and the next goal state from the mission planner. Figure 5(b) displays the
flowchart of navigation program structure.

3. Pilot
After the pilot receives the path list or action list from the navigator, the pilot checks
the state position. Further, the pilot will generates the behavior by giving an angle

Design of Deliberative and Reactive Hybrid Control System for Autonomous Stuff-Delivery Robot Rover

ELKOMIKA – 9

value for the gyro and the cost value for the encoder. In the process, the pilot updates
the state position to the navigator. When an obstacle is detected, the pilot will sends
the state position of the obstacle to the navigator and waits for the next path or action
list. If the state has reached the end of the path or action list, the pilot will stop the
behavior and waits for the path information or the next action list from the navigator.
Flowchart of pilot program structure is shown in Figure 6.

Receive Path List or
Action List from

Navigator

Check The State
Position

Generate Behav ior by
Provi ding T he Angle Value
for Gyro and Cos t Value for

Encoder

Update The State
from Encoder Value

Stop Motion if The
State Already in The

End of Path

Waiting for The Next
Path or Act ion from

Navigator

Send Obstacle State
to Navigator

Obstacle
Detected

?

No

Yes

Figure 6. Pilot Program Structure

2.6 Design of Reactive System
The structure of the reactive system used in the mission is demonstrated in Figure 7 where S
refers to suppress and I refers to inhibit.

Pilot

Ultrasonic

Encoder

Light
Sensor

Gyro

Halt

Position

Positioning

Angular
Motion

Forward
Motion

Grasp

Pilot

Motor
Drive

S S I

Figure 7. Reactive System

Eddy Wijanto

ELKOMIKA – 10

Open Grip

Close Grip

S

S

Motor Velociry 20
Become 0

Motor Velocity -20
Become 0

Motor
Gripper

Figure 8. Grasp Behavior

The negotiators used in this reactive system are as follows:
1. When the angular motion behavior is executed, it suppresses forward motion
2. When positioning behavior is executed, it suppresses other motion behavior
3. When the obstacle is detected, the halt behavior will be executed where this behavior will

inhibits the entire reactive system until the next behavior generating from the pilot.

The velocity used to drive the gripper motor is 20 where the motor velocity decreases from 20
to 0 to open the grip and from -20 to 0 to close the grip. The grasp behavior is depicted in
Figure 8.

Positioning
Motion Hold, 1 if
No Positioning, 0

if Positioning

Angular Motion
Hold, 1 if No

Positioning, 0 if
Positioning

Constant Speed
(Value of 20)

Speed for
Angular Motion

Speed for
Positioning

Obstacle Hold, 1
if No Obstacle, 0
if Any Obstacle

X + X + X
Speed of Motor A

and B

Figure 9. Forward Motion Behavior

In the forward motion behavior, the motor speed used is 20. Several things that affect the
forward motion behavior, including:
1. When an obstacle is detected, the halt behavior will works and gives a multiplier value of

0 to the motor speed in forward motion

Design of Deliberative and Reactive Hybrid Control System for Autonomous Stuff-Delivery Robot Rover

ELKOMIKA – 11

2. When the angular motion behavior works, this behavior will produces a multiplier value of
0 to the motor speed in forward motion

3. When the positioning behavior works, this behavior will produces a multiplier value of 0
to the motor speed in forward motion

Figure 9 presents the forward motion behavior.

Gyro

Angle of
Direction

Value

- X

Speed of
Motor A

Speed of
Motor B

Gain Value

The Absolute Error Small than
6, The Angular Motion Hold is

1, Else is 0

1 X

Figure 10. Angular Motion Behavior

The mechanism of the positioning behavior used in the mission is the robot will move straight
until both light sensors detect the black line, then the gyro and encoder will be reset. The
robot will backoff until the encoder value reaches 200. In order to ensure the robot position in
the middle of the grid, positioning is also done by angular turn 90 degree counter clockwise,
then the robot will move straight until both light sensors detect the black line. Further, the
gyro and encoder will be reset. The robot will backoff until the encoder value reaches 200.
The robot then makes angular motion at 90 degrees clockwise and the gyro sensor is reset.
The positioning behavior is conducted at start condition and after getting the object. The
positioning behavior is displayed in Figure 11.

Correct Position with
Black Tape in Front
using Light Sensor

Reset Gyro and
Encoder, Backoff until
Encoder Value is 200

Turning 90
Degrees Counter

Clockwise

Correct Position with
Black Tape in Left
using Light Sensor

Reset Gyro and
Encoder, Backoff until
Encoder Value is 200

Turning 90
Degrees

Clockwise
Reset Gyro

Figure 11. Angular Motion Behavior

Encoder

Next Step
Cost

>
Position
State

Update

Ultrasonic
Sensor

15 Cm

<
Update

Obstacle
Position

Obstacle Hold Value 0,
Ask Deliberative Layer

for The New Path

(a) (b)

Figure 12. (a) Position Behavior, (b) Halt Behavior

Position Behavior is the part that plays a role in providing position state updates to the pilot.
When the encoder reading value is greater than the next cost, the position state will be
updated. Figure 12(a) presents the position behavior. If the value of the ultrasonic sensor is
less than 15 cm, which indicates an obstacle, the halt behavior will be activated. Halt behavior

Eddy Wijanto

ELKOMIKA – 12

will stop or inhibit all existing reactive systems. The obstacle position is updated to the pilot,
then the pilot will informs the navigator and waits for the new path list. The halt behavior is
depicted in Figure 12(b).

3. RESULTS AND DISCUSSION

In order to prove that the hybrid deliberative and reactive control system proposed in this
paper can be implemented for autonomous stuff-delivery robot, we performed 100 test runs
on the physical robots used in the mission with five different scenario and world model, in
which 10 test runs for every scenario. For each scenario, we randomly created obstacle. The
robot completely finished the delivery process for each scenario and test runs with a little time
difference according to the scenario. For the clarity of analysis, in this section we used the
world model defined in the Section 2. Table 2 summarize the state of each step while Table 3
reveals the object collection time.

Table 2. State of The Robot

Mission Starting
State

Route State Goal State

Go to The First Sub-Goal {2,1} {2,1}, {2,2}, {2,3}, {2,4}, {2,5} {2,5}
Go to The First Goal {2,5} {2,5}, {2,6}, {2,7} {2,7}
Go to The Second Sub-Goal {2,7} {2,7}, {2,6}, {3,6}, {3,5}, {3,4} {3,4}
Go to The Second Goal {3,4} {3,4}, {3,5}, {3,6}, {3,7} {3,7}
Go to The Third Sub-Goal {3,7} {3,7}, {3,6}, {2,6}, {1,6}, {1,5} {1,5}
Go to The Third Goal {1,5} {1,5}, {1,6}, {1,7} {1,7}
Avoid The Obstacle {1,7} {1,7}, {1,6}, {2,6}, {2,5} {2,5}
Go Home {2,5} {2,5}, {2,4}, {2,3}, {2,2}, {2,1} {2,1}

Table 3. Object Collection Time

Scenario Average Time (Second)
First 238
Second 227
Third 232
Fourth 218
Fifth 245

The results observed in the testing of the mission are as follows:
1. Go to The First Object (First Sub-Goal)

This part leaves us with three objects for which the mission planner must first calculate
the object cost. To determine the order in which objects should be retrieved, mission
planner calculates the cost of all remaining objects. From Figure 2(b), we can see that the
position of the blue object is {1,5}, the position of the green object is {2,5}, and the
position of the red object is {3,4}. Among the remaining objects, the object with the
lowest cost is retrieved first. The mission planner works and can determine the object
acquisition order based on the calculation of the function value F where the minimum F
value between the start or home position {2,1} and the three objects is the F value. of
the Green object at position {2.5}. In this section, the navigator is working correctly and
can perform path generation using the A* algorithm with route states {2,1}, {2,2}, {2,3},
{2,4}, {2.5}. Pilots also work well and can generate behavior based on paths or action
lists generated by the navigator, which is positioning, forward motion, and grasp behavior.

Design of Deliberative and Reactive Hybrid Control System for Autonomous Stuff-Delivery Robot Rover

ELKOMIKA – 13

2. Go to The First Goal
After moving to the first sub-goal {2,5} and grabbing the green object, the robot has to
carry the green object to the first goal {2,7}, where the pilot updates the start and end
positions. Then, motions are generated based on paths that are forward motion and
release behavior, with rouse states at {2,5}, {2,6}, {2,7}. This part shows that the pilot
can update the start and end positions and perform the proper behavior.

3. Go to The Second Object (Second Sub-Goal)
This part leaves us with two objects where the mission planner have to calculate the object
cost between the blue and red objects. From Figure 2(b), we can found that the position
of the blue object is {1,5} and the position of the red object is {3,4}. Among the remaining
objects, the object with the lowest cost is retrieved first. The mission planner works and
can determine the object acquisition order based on the calculation of F value where the
smallest F value between the last position from the previous step at {2,7} and the both
objects is the red object in position {3,4}. This section also shows that the navigator is
functioning properly and can do the path generating by using A* algorithm with the route
state of {2,7}, {2,6}, {3,6}, {3,5}, {3,4}. Pilots have also worked properly and can do the
behavior generating based on paths or action lists generated by the navigator, which is
positioning, forward motion, and grasp behavior. It proves that the communication
between mission planner, navigator, and pilot has worked well in which after the first
object has been taken and placed in the goal, the pilot provided information to the
navigator then forwarded it to the mission planner.

4. Go to The Second Goal
After reaching the second sub-goal {3,4} and grabbing the red object, the robot must
move it to the second goal {3,7}, where the pilot need to update the start and goal
positions and generate the forward motion and release behavior based on paths with the
route state of {3,4}, {3,5}, {3,6}, {3,7}. This section shows that the pilot was successful
and that it was able to update the start and goal locations.

5. Go to The Third Object (Third Sub-Goal)
There is only one object left in this part. This section shows that the navigator is working
properly and can do the path generating by using A* algorithm between the last position
from the previous step at {3,7} and the blue objects at position {1,5}, with the route state
of {3,7}, {3,6}, {2,6}, {1,6}, {1,5}. Pilots also work properly and can generate behavior
based on paths or action lists generated by the navigator, which is positioning, forward
motion, and grasp behavior. This proves that the communication between mission
planners, navigators, and pilots functioned well. After the second object was picked up
and placed on target, the pilot provided information to the navigator and further forwarded
it to the mission planner.

6. Go to The Third Goal
After reaching the third sub-goal {1,5} and grabbing the blue object, the robot should
move the object to the third goal {1,7}. The pilot needs to update the start and end
positions and perform the behavior generating based on paths, which is forward motion
and release behavior, with the route state of {1,5}, {1,6}, {1,7}. This part presents that
the pilot has functioned well and can updated the start and goal positions.

7. Avoid The Obstacle
After completing the mission, the robot must return home, which is from position at {1,7}
to home position at {2,1}. In this scenario there is an obstacle at {1,4}. This section
proved the reactive mechanism has functioned well, when an obstacle is detected, the
pilot can provide information to the mission planner through the navigator. The mission
planner uses the A* algorithm to provide route regeneration information to the navigator.
The navigator can generate a new path to avoid the presence of obstacles, and the pilot
can follow the navigator's new path using the new route states of {1,7}, {1,6}, {2,6},

Eddy Wijanto

ELKOMIKA – 14

{2,5}. To avoid diagonal movements near the obstacle, the mission planner gives a rule
for navigator in the path generating in which when the obstacle is detected, (X), (X-1),
and (X+1) positions are entered into the close list and both will return to the open list
after the robot does not detect an obstacle again, where X is the position state of the
obstacle.

8. Go Home
After avoiding the obstacle, in this section, the mission planner can update the start and
goal position to the home area, which is the last position from previous step at {2,5} to
the home position at {2,1}. The Navigator successfully generated an action list based on
information of start and home position by using the A* algorithm with the route state of
{2,5}, {2,4}, {2,3}, {2,2}, {2,1}. The pilot has been able to produce behavior according
to the action list from the navigator, which is forward and positioning behavior.

Further, from Table 3, it can be seen that the average time to finish each of five scenarios
implemented in the mission, there is only a slight time difference. The differences come from
the position of the obstacles that effect the cost function of each sub goal and goal itself.
Overall, from the experiment of five scenarios, the hybrid system can finish the mission
successfully, without being affected by the position of the obstacle. These results prove that
the hybrid system can conduct the correct plan and in the same time can react to the unknown
environment situation according to the obstacle in the mission.

4. CONCLUSIONS

From the design and testing of the Deliberative and Reactive Hybrid Control System for
Autonomous Stuff-Delivery Robot Rover, it can be concluded that hybrid systems which are a
combination of deliberative systems and reactive systems can minimize the weaknesses of
each system. With this hybrid system, the stuff-delivery process can be achieved in accordance
with the plan and can react to conditions that were not previously known in planning, such as
the obstacle. From the design and testing, it has been proven that the A* algorithm can be
implemented in the embedded systems, such as the EV3 Mindstorm Robot with some
adjustments, for example, using one dimentional array and cluster. Robots can perform a
search mechanism through paths generating using the A* algorithm. Further works will
focused on more complex world scenario and increasing the efficiency of the hybrid control
system.

REFERENCES

Alatise, M., Hancke, G. (2020). A Review on Challenges of Autonomous Mobile Robot and

Sensor Fusion Methods. IEEE Access, 8, 39830-39846.

Asokan, T. (2016). Autonomy for Robots: Design and Developmental Challenges (Keynote

Address). Procedia Technology, 23, 4-6.

Avram, O., Baraldo, S., Valente, A. (2022). Generalized Behavior Framework for Mobile Robots

Teaming with Humans in Harsh Environments. Front Robot AI, 9, 898366.

Design of Deliberative and Reactive Hybrid Control System for Autonomous Stuff-Delivery Robot Rover

ELKOMIKA – 15

Cho, J.-H., Kim, Y.-T. (2017). Design of Autonomous Logistics Transportation Robot System

with Fork-Type Lifter. International Journal of Fuzzy Logic and Intelligent Systems,

17(3), 177-186.

Fragapane, G.D., Koster, R., Sgarbossa, F., Strandhagen, J.O. (2021). Planning and control of

autonomous mobile robots for intralogistics: Literature review and research agenda.

European Journal of Operational Research, 294(5), 405-426.

Gascueña, Manuel, J., et al. (2015). Deliberative Control Components for Eldercare Robot

Team Cooperation. J. Intell. Fuzzy Syst., 28(1), 17-28.

Hassani, I., Maalej, I., Rekik, C. (2018). Robot Path Planning with Avoiding Obstacles in Known

Environment using Free Segments and Turning Points Algorithm. Mathematical

Problems in Engineering, 2018(6), 1-13.

Ibáñez, J.R.S., Perez-del-Pulgar, C., Garcia, A. (2021). Path Planning for Autonomous Mobile

Robots: A Review. Sensors, 21(23), 7898.

Ingrand, F., Ghallab, M. (2017). Deliberation for Autonomous Robots: A Survey. Artificial

Intelligence, 247(4), 10-44.

Lazzeri, N., Mazzei, D., Cominelli, L., Cisternino, A., Rossi, D.D. (2018). Designing The Mind of

a Social Robot. Applied Sciences, 8(2), 302.

Murphy, R. (2000). Introduction to AI Robotics. London: MIT Press.

Panigrahi, P., Bisoy, S. (2021). Localization Strategies for Autonomous Mobile Robots: A

Review. Journal of King Saud University-Computer and Information Sciences,

34(XXIII).

Savage, J., Muñoz, S., Contreras, L., Matamoros, M., Negrete, M., Rivera, C., Steinbabuer, G.,

Fuentes, O., Okada, H. (2021). Generating Reactive Robots’ Behaviors using Genetic

Algorithms. International Conference on Agents and Artificial Intelligence (pp. 698-

707).

Tobaruela, T.A., Rodríguez, A. (2017). Reactive Navigation in Extremely Dense and Highly

Intricate Environments. Plos One, 12(12), e0189008.

Wang, X., Zhang, J. (2017). RPL: A Robot Programming Language Based on Reactive Agent.

International Conference on Electrical, Automation and Mechanical Engineering, (pp.

250-255).

Wijanto, E. (2022). Design of Behavior-Based Reactive System for Autonomous Stuff-Collecting

Mobile Robot. Techne, 21(1), 101-116.

