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ABSTRAK 

Elektrokardiogram (EKG) adalah salah satu perangkat medis yang paling banyak 
digunakan untuk mendiagnosis masalah jantung. Sinyal abnorma EKG 
mempunyai variasi dan beberapa mirip antara yang satu dengan lainnya. Oleh 
karena itu, pada penelitian ini diusulkan metode klasifikasi kelainan jantung 
berdasarkan EKG menggunakan fitur statistik orde satu  dan Dispersion Entropy 
(DisEn) untuk tahap ekstraksi ciri. Sedangkan untuk tahap klasifikas sinyal EKG 
multi-abnormal, kami membandingkan metode Support Vector Machine (SVM) 
dan K-Nearest Neighbor (KNN). Pada penelitian ini diklasifikasikan tujuh kelas 
EKG, yaitu Normal, Atrial Fibrillation (AFIB), Atrial Flutter (AFL), Atrial Premature 
Beats (APB), Begiminy, Left Bundle Branch Block (LBBB), dan Premature 
Ventricular Contraction (PVC). Dari simulasi ini, sistem dapat mendeteksi sinyal 
normal dan abnormal dengan akurasi 85,1% menggunakan K-NN. Sementara itu, 
pada simulasi klasifikasi tujuh kelas sinyal EKG menghasilkan akurasi hingga 
75.1%. 

Kata kunci: EKG, klasifikasi, Dispersion Entropy, statistik 

ABSTRACT 

Electrocardiogram (ECG) is one of the most widely used medical devices to 
diagnose heart disease. Abnormal ECG signals have variations and some are 
similar to another. Therefore, in this study, proposed a method for classifying 
cardiac abnormalities based on ECG using first-order statistical features and 
Dispersion Entropy (DisEn) for feature extraction. Meanwhile, for the multi-
abnormal ECG signal classification stage, we compared the Support Vector 
Machine (SVM) and K-Nearest Neighbor (KNN) methods. In this study, seven 
ECG classes were classified, namely Normal, Atrial Fibrillation (AFIB), Atrial 
Flutter (AFL), Atrial Premature Beats (APB), Begiminy, Left Bundle Branch Block 
(LBBB), and Premature Ventricular Contraction (PVC). From this simulation, the 
system can detect normal and abnormal signals with an accuracy of 85.1% using 
K-NN. Meanwhile, the classification simulation of seven classes of ECG signals 
produces an accuracy of up to 75.1%. 

Keywords: ECG, classification, Dispersion Entropy, statistics
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1. INTRODUCTION 

 
One of the most commonly used procedures for identifying heart disease is the 
electrocardiogram (ECG) (Martis et al., 2013) (Kaur and Arora, 2012). By applying 
electrodes on the skin, the ECG monitors the heart's electrical activity over time. This signal 
is used to diagnose cardiovascular health and can be deciphered by understanding the basics 
of its four waves: T, U, P, and QRS complex (Manullang, Simanjuntak, and Ramdani 
2019) (Pestana et al., 2020) (Sahoo et al., 2017). Our prior work used SVM algorithms 
as classifiers and built an ECG classification based on ECG signals (Aulia and Hadiyoso, 
2021). The results' accuracy, sensitivity, and specificity were 81.1%, 89.8%, and 79.4%, 
respectively. However, the proposed method has still been refined to aid clinical diagnosis. 
As a result, we proposed in this paper that we optimize the performance from the previous 
experiment (Aulia and Hadiyoso, 2021) to classify ECG signals into seven categories: 
Normal, Atrial Fibrillation (AFIB), Atrial Flutter (AFL), Atrial Premature Beats (APB), Begiminy, 
Left Bundle Branch Block (LBBB), and Premature Ventricular Contraction (PVC). 
 
Previous studies have attempted to classify heart illness based on the ECG signal, and some 
of them were extracted in the time domain (Wei-quan et al., 2016) (Si-yang et al., 
n.d.) (Natwong et al., 2006) (He et al., 2015) (Candra et al., 2017) (Devi and 
Audithan, 2017). Dispersion Entropy (DisEn), on the other hand, was just launched and 
performed admirably, showing that it should be explored further, especially in bio-signal 
cases (Kafantaris et al., 2019) (Azami and Escudero, 2018). 
 
Prior research for identifying ECG data generally used the Support Vector Machine (SVM) 
technique. The SVM approach was commonly used in previous research to classify ECG data 
and epileptic ECG signal categorization(Rizal and Hadiyoso, 2018). We achieve a 
satisfying result from both experiences with a 93.8% and precision of 97.7%, respectively. 
Another classifier that is mainly used is the K-NN method (Hassanat et al., 2014), because 
the technique is effortless and highly effective in the field of image processing, machine 
learning, text analysis, data mining, object recognition, and other fields (Aulia et al., 2015; 
Zhang et al., 2017). Based on state of the art above, in this study, we use DisEn, which 
optimizes with the statistic first order (mean, variance, skewness, kurtosis) for the feature 
extraction. As for the classifier method, we compare the SVM and the K-NN. Five-cross 
validation was used to divide training and test data in this study. The data originates from a 
single lead in mat format retrieved from the MIT-BIH Arrhythmia's PhysioNet service. 
      
 

2. MATERIAL AND METHODS 

The system overview is presented in Figure 1. The input ECG signal with a duration of 3 
seconds will be extracted its essential features using statistical methods (mean, variance, 
skewness, and kurtosis) and DisEn. Each ECG signal generates 5 features which then 
become a feature set. The feature set then becomes a predictor in the classification stage. 
Descriptions of the material and methods used in the findings of this study are presented in 
the following sub-sections. 
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Figure 1. System Overview 
 

2.1 ECG Dataset 
The ECG signal database used in this research was recorded with a gain of 200 amplification 
[adu/mV] at a sampling frequency of 360 Hz. Recording was performed on 45 patients with 
a minimum age of 23 years for women and 32 years for men with a maximum age limit of 
89 years. There were 19 female patients and 26 male patients that were classified into 7 
classes, i.e. Normal, Atrial Fibrillation (AFIB), Atrial Flutter (AFL), Atrial Premature Beats 
(APB), Begiminy, Left Bundle Branch Block (LBBB), and Premature Ventricular Contraction 
(PVC). The data comes from one lead in mat format obtained from the MIT-BIH Arrhythmia 
database from the PhysioNet service (http://www.physionet.org). A total of 794 ECG signals 
with a length of about 3 seconds were simulated in this study. 
 
2.2 First Order Statistical Feature Extraction 
First-order statistical features that are calculated include mean, variance, skewness, and 
kurtosis. These features are calculated using the following Equation (1)-(4) (Esmael et al., 
2013). 
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with N is the number of sample, 𝜇 is mean, 𝑠௜ is the data, 𝜎ଶ is variance, 𝑠𝑘 is skewness, and 
𝑘𝑢 is kurtosis. 

 
2.3 Feature Extraction Using Dispersion Entropy 
Entropy in a signal is an effective measure used for the irregularity and uncertainty of time 
series. In 1948, Shannon introduced the concept of entropy for the measurement of the 
amount of regularity of time series which was previously measured using the concept of 
probability distribution. The system has a maximum entropy if a similar system has a 
different state otherwise the system has a minimum entropy if a similar system has the same 
state or the probability value is one (Rostaghi and Azami, 2016) (Richman and 
Moorman, 2000). 
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Sample entropy (SE) (Humeau, 2018; Zaylaa et al., 2015) (Sharma et al., 2015) and 
permutation entropy (PE) (Zanin et al., 2012) are commonly used entropy in biomedical 
signals. The disadvantage of SE is that it is not fast enough, especially for long signals, while 
the drawback of PE is that it does not consider the average value of the amplitude and the 
difference between the amplitude values (Redelico et al., 2017). 

 
Dispersion entropy (DisEn) can overcome the shortcomings that exist in SE and PE. The 
method used is to convert the data into a new signal. Various signal parameters such as 
amplitude, frequency, noise power, and bandwidth are processed from randomness to 
periodic oscillation (Azami and Escudero, 2018). The signal processing process includes 
autoregressive process, MIX process, noise bandwidth increase, and additive noise power 
enhancement. The new signal obtained is formed into several patterns to calculate the 
probability of forming the pattern (Kafantaris et al., 2019). 
 
The DisEn algorithm includes 4 main steps for a univariate signal of length 𝑁: 𝑥 =
{ 𝑥1, 𝑥2, … , 𝑥𝑁 } 

 
1. Take a number of linear and nonlinear approaches to map 𝑥𝑗(𝑗 = 1, 2, … , 𝑁) to class 𝑐 

from 1 to 𝑐. Normal cumulative distribution function (NCDF) is used to map 𝑥 into 
𝑦(𝑦 = 𝑦1, 𝑦2, … , 𝑦𝑁)  from 0 to 1. The signal has 𝑚 members and each member is an 
integer from 1 to 𝑐. 

2. The number of possible dispersion patterns for each time series 𝑧௜
௠,௖ is equal to 𝑐௠. 

Each embedding vector 𝑧௜
௠,௖ has dimensions of length 𝑚 template, the delay time 𝑑, 

and the number of classes 𝑐  that represents the number of patterns. 𝑧௜
௠,௖ =

൛ 𝑧௜
௖ , 𝑧௜ାௗ
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3. The number of dispersion patterns 𝜋௩బ௩భ…௩೘షభ
   is represented as 𝑝(𝜋௩బ௩భ…௩೘షభ

)  that 
are assigned to 𝑧௜

௠,௖ . For frequency is calculation,  the Equation 5 is used for each 𝑐௠.  
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4. DisEn is a method to describe the spread in a data set, according Shannon’s definition  
DisEn is calculated based on Equation 6. 
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). 𝑙𝑛(𝑝(𝜋௩బ௩భ…௩೘షభ

))௖೘

గୀଵ                        (6) 
 
 

Selection of appropriate parameters is something that must be considered in the DisEn 
approach. The potential dispersion pattern number (𝑐௠) must be smaller than the signal 
length for signal reliability. When the value of 𝑐 does not match, the DisEn method will be 
sensitive to noise. The selection of the value of 𝑚 affects the detection of dynamic changes 
in the signal. 
 
2.4 Performance Evaluation 
For performance evaluation, there are several performance evaluations which are commonly 
used, including Support Vector Machine (SVM) and K-Nearest Neighbor (KNN). 
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2.4.1 Support Vector Machine 
Support Vector Machine (SVM) is one of the methods in supervised learning which is usually 
used for linear and non-linear classification and regression (Madan and Gupta, 2014). 
SVM has a clearer concept mathematically compared to other classification techniques. 
 
SVM is used to find a hyperplane, which is a function that can be used to separate the best 
classes by maximizing the distance between classes (Venkatesan et al., 2018). As shown 
in Figure 2, hyperplane 1 (H1) does not separate classes, (H2) separates classes with a small 
margin, and (H3) performs class separation with a maximum margin. 
 

 
Figure 2. Finding The Best Hyperplane In SVM 

 
Two classes are not always perfectly separated, so SVM needs to be reformulated using soft 
margin techniques. If the soft margin technique is still unable to find the separator in the 
hyperplane, a kernel is needed to transform the data to a higher dimensional space. 
 
2.4.2 K-Nearest Neighbor 
K-Nearest Neighbor (KNN) is an algorithm that is widely used in the world of machine 
learning for classification. This algorithm classifies data based on similarity or similarity or 
proximity to other data "neighbors" (Maniyan and Shivakumar, 2018). First determining 
the number of neighbors (K) that will be used for class determination considerations, then 
calculating the distance from the new data to each data point in the dataset and finally 
determining the class of the new data with the data reference with the closest distance. The 
KNN illustration is shown in Figure 3, with a value of K = 3, the new data will be included in 
the red class because in a circle with 3 members, there is more red than blue. If the value of 
K = 5 is used, the new green data will be included in the blue class. 
 

 
Figure 3. Classification Using K-NN With k=3 
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3. RESULTS AND DISCUSSION 

In this section, the results of feature extraction and performance evaluation of proposed 
methods in the classification of ECG abnormal signals are discussed. The results of the 
average and standard deviation of the statistical characteristics and DisEn for each ECG 
signal are presented in Figures 4, 5, 6, 7, and 8. Figure 4 shows the feature mean 
characteristics of each ECG signal where the ECG signals have a difference of one with each 
other with overlapping standard deviations. The AFL signal generates the highest mean 
characteristic compared to others. Figure 5 presents the variance characteristic where this 
feature tends to generate similar values as indicated by a high standard deviation. The 
characteristics of kurtosis and skewness as presented in Figures 6 and 7 show the 
differences between ECG types. However, it has a fairly high standard deviation as the mean 
feature. Meanwhile, the DisEn feature presented in Figure 8 shows a difference with a low 
standard deviation. With this result it is thought that all features will be used in the 
classification simulation so that there is no feature selection scenario as a predictor. 
 

 
Figure 4. Feature Mean 

 

 
Figure 5. Feature Variance 
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Figure 6. Feature Kurtosis 

 

 
Figure 7. Feature Skewness 

 

  
Figure 8. Feature DisEn 

 
 
The final stage is evaluating the performance of the proposed method using a classifier. At 
this stage, several classifier methods are used to test the robustness of the proposed 
method. SVM with kernel variations and K-NN were used in this evaluation. Meanwhile 5-
cross validation was employed to share the training and test data. Cross-validation was 
chosen to avoid overfitting in the case of classification with a relatively small dataset where 
in this study there were a small number of ECG signal types. Table 1 presents the accuracy 
of each classifier. Quadratic SVM and K-NN generate the highest accuracy. The highest 
accuracy produced is 75.1%. Other classification methods also produce similar accuracy 
(>70%) except for linear SVM. These results indicate that the proposed feature extraction 
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method is robust. The confusion matrix for the highest accuracy case is presented in Table 
2. From Table 2 it can be seen that AFL and APB contribute to generating the highest 
misclassification. This is because the two types of ECG have similar characteristics, besides 
that the amount of training data is less than other types. 
 

Table 1. Classification Accuracy  

Classifier 
Accuracy 

(%) 
Linear SVM 59.9 
Cubic SVM 72.7 

Quadratic SVM 75.1 
Gaussian SVM 73.4 

K-NN 75.1 
 

Table 2. The Confusion Matrix Of The Highest Accuracy 

  

Predicted Class 
Accuracy 

AFIB AFL APB Bigeminy LBBB Normal PVC 

T
ru

e 
C

la
ss

 

AFIB 116 0 1 0 3 11 4 0.859259 
AFL 4 10 0 0 0 6 0 0.5 

APB 6 1 35 2 0 18 3 0.538462 
Bigeminy 0 0 0 40 6 4 5 0.727273 

LBBB 2 1 1 4 83 12 0 0.805825 
Normal 12 2 19 5 12 227 6 0.80212 

PVC 4 0 9 10 1 24 85 0.639098 
 

Table 3. Accuracy Normal Vs Abnormal ECG 

Classifier Accuracy 
Linear SVM 76.6 
Cubic SVM 81.6 

Quadratic SVM 81.4 
Gaussian SVM 84.1 

K-NN 85.1 
 
Another test scenario that is simulated is the evaluation of the performance of the proposed 
method in classifying normal and abnormal ECG. Abnormal ECG consists of six types of ECG 
including PVC, bigeminy, AFL, AFIB, LBBB, and APB. The results of testing this scenario are 
shown in Table 3. From this simulation, the system is able to detect normal and abnormal 
signals with an accuracy of 85.1% using K-NN. Meanwhile, SVM yields slightly lower 
accuracy. 
 
The results of this study yield lower accuracy compared to studies (Estananto, 2018) 
(Wijayanto et.al., 2022) (Aulia and Hadiyoso, 2021). However, this study presents a 
system that can classify ECG signals with more signal types. Other studies only present two 
or three class classifications. Some of the limitations of this study are the small amount of 
data on some types of ECG. This contributes to lowering the accuracy of the system. Future 
studies are wide open in the exploration of other feature extraction methods to improve 
classification accuracy. 
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4. CONCLUSION 

This study presents a classification system of ECG signals into seven classes. The feature 
extraction method proposed in this study uses the mean, variance kurtosis, skewness, and 
DisEn. The result of feature extraction shows that the standard deviation overlaps with a 
relatively small value, so there is no specific feature to be used as a predictor. As a 
performance test on this classification system, SVM and KNN are used, with 5-cross 
validation being used to separate the training data from the test data. From the simulations 
performed, the highest accuracy in the seven-class classification case is 75.1%. Meanwhile, 
the proposed method can classify normal ECG and abnormal ECG with an accuracy of 
85.1%. Limited data makes system accuracy not optimal, as in AFL and APB, this contributes 
to generating the highest misclassification. For future research, there is an opportunity to 
explore other feature extraction methods so that accuracy can be improved. Deep learning 
methods are also thought to generate higher classification accuracy. 
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