
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika

ISSN(p): 2338-8323 | ISSN(e): 2459-9638 | Vol. 8 | No. 1 | Halaman 58 - 68
DOI : http://dx.doi.org/10.26760/elkomika.v8i1.58 Januari 2020

ELKOMIKA – 58

CRC 8-bit Encoder-Decoder Component in FPGA
using VHDL

ANDHI RACHMAN SALEH1, SUNNY ARIEF SUDIRO2

1Department of Electrical Engineering, Faculty of Industrial Technology
Universitas Gunadarma, Indonesia

2STMIK Jakarta STI&K, Jakarta, Indonesia
Email: andhis@hotmail.co.id

Received 4 April 2019 | Revised 8 Juli 2019 | Accepted 24 September 2019

ABSTRAK

Cyclic Redundancy Check (CRC) adalah salah satu jenis dari deteksi kesalahan
yang digunakan pada pengiriman data. CRC umumnya digunakan di jaringan
digital dan perangkat penyimpanan untuk mendeteksi perubahan tidak disengaja
pada data asli. CRC memiliki keandalan yang tinggi dalam pengiriman data karena
CRC menggunakan algoritma berdasarkan cyclic code. Pada artikel ini generator
polinomial yang digunakan dalam encoder dan decoder adalah CCITT 𝑋 𝑋
 𝑋 1 dan dengan lebar bit data 8 bit. CRC-8-CCITT biasanya digunakan pada
Asynchronous Transfer Mode (ATM) headers, Integrated Services Digital Network
(ISDN) HEC, dll. Pada penelitian ini dilakukan perancangan dan diterapkan dengan
menggunakan VHDL. Software pendukung yang digunakan untuk
mengimplementasikan VHDL adalah Xilinx ISE 8.1i. Rancangan encoder dan
decoder CRC ini memiliki komponen yang lebih effisien.

Kata kunci: Cyclic Redundancy Check (CRC), VHDL Language, Xilinx ISE 8.1i

ABSTRACT

Cyclic Redundancy Check (CRC) is one type of error detection used in data
transmission. CRC commonly used in digital networks and storage devices to detect
accidental changes to raw data. CRC has high reliability in data transmission
because uses algorithms based on cyclic codes. In this article the polynomial
generator used in the encoder and decoder is the CCITT 𝑋 𝑋 𝑋 1 and with
a width of 8 bits data bits.CRC-8-CCITT usually used at Asynchronous Transfer
Mode (ATM) headers, Integrated Services Digital Network (ISDN) HEC, etc. This
article presents design and implementation of a component using VHDL. The
supporting software used to implement VHDL is Xilinx ISE 8.1i. This CRC encoder
and decoder design have more efficient components.

Keywords: Cyclic Redundancy Check (CRC), VHDL Language, Xilinx ISE 8.1i

CRC 8-bit Encoder-Decoder Component in FPGA using VHDL

ELKOMIKA – 59

1. INTRODUCTION

Cyclic Redundancy Check (CRC) is one type of error detection used in data transmission. CRC
commonly used in digital networks and storage devices to detect accidental changes to raw
data. For example, in everyday life sending data from one device to another using USB,
sending data using Bluetooth, sending data using Ethernet, etc. CRC has high reliability in data
transmission because CRC has an algorithm based on cyclic codes. In the CRC algorithm there
is a main key in detecting errors in a file, namely a polynomial generator. In its design
sometimes requires a complex logic because to demand conformity of the results of the
mathematics resulting in requiring a lot of resources. In this journal we will design the CRC
using the VHDL language and trimming the logic so that the components used are fewer but
the accuracy is still appropriate.

In this journal, the polynomial generator used in the encoder and decoder is the CCITT
X^8+X^2+ X+1 and with a width of 8 bits data bits.CRC-8-CCITT usually used at
Asynchronous Transfer Mode (ATM) headers, Integrated Services Digital Network (ISDN) HEC,
etc.

Cyclic Redundancy Check (CRC) is one type of error detection with the use of redundancy in
this method. Redundancy is adding additional bits to the data to be sent. This technique of
using redundancy is quite popular in its use. Besides CRC there are also types that use
redundancy such as, Simple Parity Check, Two-dimensional Parity check and Checksum
(Forouzan & Fegan, 2007).

CRCs are based on the theory of cyclic error-correcting codes. The use of systematic cyclic
codes, which encode messages by adding a fixed-length check value, for the purpose of error
detection in communication networks, was first proposed by W. Wesley Peterson in 1961
(Peterson & Brown, 1961). In journals W. Wesley Peterson and D. T. Brown provide a new
perspective on cyclic codes, which is enough to use basic mathematics and understand the
nature of hamming and fire codes.

Within the network, Cyclic Redundancy Check (CRC) is one type of method used to detect
errors in data transmission. In sending data packets CRC has high credibility to maintain data
packets during shipping caused by noise. Each crc data transmission generates a unique code
on the CRC generator then sent to the CRC checker (Peterson & Brown, 1961). Although
CRC is widely applied in networks and data storage, CRC can also be applied to other uses
such as applications start-up vertification, load-time vertification and program and data
correctness validation (Ritter, 1986).

In The OSI Layer, CRC works on layer 2, namely Data Link. Data Link has two main function
namely, Data Link Control and Media Access Control. Data Link Control is responsible for the
design and procedures for communication between two adjacent nodes: node-to-node
communication and media access control, or how to share the link. The Data Link Control has
functions that include Framing, Flow and Error Control, and software implemented protocols
that provide smooth and reliable transmission of frames between nodes (Forouzan & Fegan,
2007).

CRC has one main part, the generator polynomial. This generator polynomial functions as a
divider in the CRC algorithm. The use of CRC must use the same generator polynomial on the
encoder or at the decoder. The basic form of a polynomial divisor is like that of ordinary
polynomials except that the generator polynomial presents a binary code into a polynomial.

Saleh and Sudiro

ELKOMIKA – 60

Just as if there is a G(x) generator polynomial with code 𝑋 𝑋 1 it will represent the code
1000011. As in Figure 1 (Ghosh, Mitra, Mukhopadhyay, Dawn, & Ghosh, 2013).

Figure 1. Represents a Polynomial Generator (Ghosh, Mitra, Mukhopadhyay, Dawn, &
Ghosh, 2013)

In the calculation there is almost no difference made on the encoder or the decoder. The
difference that occurs is where the encoder has an augmented dataword and the decoder has
remainder. The initial encoder process generates a unique CRC code, the data is entered first,
then the data will be copied into the encoder processing, then the data will receive a number
of bits according to the CRC used, with binary 0. Then divide the data bits against the
polynomial generator. In this division, one bit is shifted in each division and to determine
whether the remainder of the division is then divided by the polynomial divisor or not, it is
necessary to pay attention to the MSB. Division is complete until the last data bit in augmented
dataword has been used. After completing the distribution, the remaining results will be used
as a unique CRC code. As shown in Figure 2.

1 1 1 1
1 0 1 1 1 1 0 1 0 0 0

Augmented Dataword
1 0 1 1
1 1 0 0
1 0 1 1
1 1 1 0
1 0 1 1
1 0 1 0
1 0 1 1
0 0 1

Remainder

Data
G(x)

Figure 2. Encoder

1 1 1 1
1 0 1 1 1 1 0 1 0 0 1

1 0 1 1
1 1 0 0
1 0 1 1
1 1 1 0
1 0 1 1
1 0 1 1
1 0 1 1
0 0 0

Remainder

G(x)
Codeword

Figure 3. Decoder

CRC 8-bit Encoder-Decoder Component in FPGA using VHDL

ELKOMIKA – 61

In Figure 3. shows the calculations that occur in the decoder. The incoming data decoder is
called a codeword. The Codeword will be divided by the same polynomial generator used by
the encoder. The division process is the same as the encoder and from the calculation results
taken is Remainder. Figure 3. shows that when there are no errors, the remainder values are
0.

1 1 1 1
1 0 1 1 1 1 0 1 0 1 1

1 0 1 1
1 1 0 0
1 0 1 1
1 1 1 0
1 0 1 1
1 0 1 1
1 0 1 1
0 0 0

Remainder

G(x)
Codeword

Figure 4. Decoder when Remainder Error

In Figure 4. shows that when the decoder receives a codeword there has been a change when
sending data.

2. CRC SCHEME

In this journal the polynomial generator used in the encoder and decoder is the CCITT 𝑋
𝑋 𝑋 1. CRC-8-CCITT usually used at Asynchronous Transfer Mode (ATM) headers,
Integrated Services Digital Network(ISDN)HEC,etc.

2.1 Encoder

Figure 5. Encoder Diagram

Saleh and Sudiro

ELKOMIKA – 62

The CRC encoder is the part that generates a unique CRC code that will be carried along with
the data to be sent. CRC component is designed in accordance with the algorithm in Figure 2
(Satran, Sheinwald, & Shimony, 2005). In Figure 5, it is explained that the copying of the
dataword which as the original data will be sent and then entered the generator block is then
combined with augmented dataword and then the division process is done as in Figure 2. The
output is the remainder of the process. Then do the merger between remainder data with the
original data dataword then it is called codeword.

2.2 Decoder
The CRC decoder is a component part of the receiver. Where the decoder will check the
received codeword if there is an error during the sending process or not. If an error occurs in
the codeword, the decision logic block will discard the received codeword while if there is no
error, the dataword will be taken from the received codeword and the dataword will be
forwarded to the next process (Satran, Sheinwald, & Shimony, 2005)

Figure 6. Decoder Diagram

In Figure 6, the decoder process scheme in which the received codeword is checked on the
checker component is then calculated as shown in Figure 3. The results taken from the
calculation are remainder. then remainder is sent to the decision logic component to decide
whether the codeword received has an error or not.

3. CRC SIMULATION AND TEST

3.1 Encoder
Encoder has a role to produce Codewords from every incoming data. Codeword itself has a
unique CRC code and data information that will be sent. Based on the design in Figure 5. Then
get the design results in Figure 7 and Figure 8.

CRC 8-bit Encoder-Decoder Component in FPGA using VHDL

ELKOMIKA – 63

Figure 7. Encoder CRC8

In Figure 7. There are clk, first, Data and Codeword ports. Each port has its own function,
such as a clk port to receive the clock signal input produced by a generator. Rst port is used
for the reset / intrusion process if an unwanted error occurs. So when Rst port receives a high
signal it will reset temporarily if it receives a low signal there is no reset process. The Data
Port has an 8-bit data width and is used to enter every data that will be processed. The
codeword port has a 16 bit data width and is used to display the results of the process
combining the remaining values of the modulo process and original data.

Figure 8. Inside of Encoder CRC8

In Figure 8 displays the design results and components used in the CRC Encoder design using
the CRC8-CCITT standard. In Figure 8 it can be seen that the most influential design
component is Number of 4 Input LUTs, Number of occupied Slices, Number of Slices containing
only related logic and Number of bonded IOBs.

In Figure 8 the number of components 4 LUT Input uses 8 components from FPGA availability
for 1920 components. The slice component describes the total components used based on the
logic used in the design and from these results we can find out whether there are components
that are not too used or not. The bound IOB component explains how many input and output
port pins are used in the design

Saleh and Sudiro

ELKOMIKA – 64

Figure 9. CRC8 Simulation Encoder

In Figure 9. Shows the simulation results of incoming data until the condition occurs if the Rst
port receives a high signal it will be reset to the CRC8 encoder. The data tested in Figure 9 is
in Table 1.

Tabel 1 displaying the data tested then made into two formats, Decimal(10) and Biner(2).
After the data in Table 1 is entered, the Encoder process is carried out. the results of the
Encoder process are found on the Codeword port. For results on the Codeword port can be
seen in Table 2.

Table 1. Data Entered

Data(10) Data(2)
185 10111001
70 01000110
80 01010000
90 01011010
130 10000010

In Table 2 displays the value of data in the Codeword port in two formats, Decimal(10) and
Biner(2). The 1st and 3rd data shows when port Rst gets a high signal.

Tabel 2. Codeword

Codeword(10) Codeword(2)
0 0000000000000000

47398 1011100100100110
0 0000000000000000

18133 0100011011010101
20663 0101000010110111
23169 0101101010000001
33415 1000001010000111

3.2 Decoder
The decoder has a role to check Codeword that has been sent by the encoder and then
processes the data into original data and determines whether the data has errors or not. The
decoder design is built based on Figure 6 so that it is obtained as shown in Figure 10 and 11.

CRC 8-bit Encoder-Decoder Component in FPGA using VHDL

ELKOMIKA – 65

Figure 10. Decoder CRC8

In Figure 10 Displays the results of the decoder design by having 5 ports which each has its
own role. The clk port functions to accept enter the clock signal generated by the Clock
generator. Rst port functions for the reset / intrusion process if an unwanted error occurs. So
when Rst port receives high signal, it will reset while if it receives low signal there is no reset
process. The codeword port has a 16 bit data width and is used to enter codeword data. The
data port has a data width of 8 bits and this port is the output of the checker results. On the
remaind port it has an 8 bit data width, this port will show the checker results whether there
is an error on Codeword during transmission or not.

Figure 11. Inside of Decoder CRC8

In Figure 11. Displays the device utility used from the utility available in the FPGA.

Figure 12. Decoder CRC8 Simulation

Saleh and Sudiro

ELKOMIKA – 66

In Figure 12 shows the simulation results from the incoming data to make the condition that
if the Rst port receives a high signal it will be reset to the CRC8 decoder. The data tested in
Figure 12 are in Table 3.

Tabel 3. Codeword decoder

Codeword(10) Codeword(2)
0 0000000000000000

47398 1011100100100110
0 0000000000000000

18133 0100011011010101
20663 0101000010110111
23169 0101101010000001
33415 1000001010000111

In Table 3 displays the value of data in the Codeword port in two formats, Decimal(10) and
Biner(2). The 1st and 3rd data shows when rst port gets a high signal.

Table 4. Data decoder

Data(10) Data(2)
185 10111001
70 01000110
80 01010000
90 01011010
130 10000010

In Table 4 displays the results of data that Checker has done to proceed to the next process.
on the Remainder port in Figure 10 shows no Codeword errors received then the data will
continue. if the Checker detects a data error, the Remainder port will display the data value.

In the design of this journal, there are several components used in making CRC Encoder and
Decoder. In the Encoder there are a number of components 8 numbers of 4 input LUTs, 4
number of occupied slices and 26 number of bonded IOBs. While in the decoder there are a
number of components 10 number of 4 input LUTs, 5 number of occupied slice and 34 number
of bonded IOBs. The results of the components obtained can be compared with previous
studies listed in the Table.

Table 5. Comparison of Encoder Components

Encoder Number of slices Number of LUTs Number of bonded
IOBs

CRC8 (Saleh, Saleh,
& Saad, 2018)

30 54 40

CRC8 (P, A, &
Kotain, 2012)

22 8 N/A

CRC8(proposed) 4 8 26

In Table 5 shows a comparison of the number of components used in the CRC8 encoder. when
compared with the second and first studies, the second study uses fewer components. When

CRC 8-bit Encoder-Decoder Component in FPGA using VHDL

ELKOMIKA – 67

viewed from the component the number of slices has a difference of 8 components, while the
number of Lut has a difference of 46 components. When compared with the second study with
this study, the difference in the number of slice components was 18 components lower than
the second study.

Table 6. Comparison of Decoder Components

Decoder Number of
slices

Number of
LUTs

Number of bonded
IOBs

CRC8 (Saleh, Saleh, & Saad,
2018)

36 94 35

CRC8 (P, A, & Kotain, 2012) 28 111 N/A
CRC8(proposed) 11 20 34

In Table 6 shows a comparison of the number of components used in the CRC8 decoder. when
compared with the first and second studies, the second study uses fewer components in the
Number of slice components while the first study is in the Number of LUTs component. When
viewed from the component the number of slices has a difference of 8 components, while the
number of Lut has a difference of 17 components. When compared with the second research
with this research, the difference in the number of slice components was 17 components lower
than the second research and the difference in the Number of LUTs components was 74
components lower than the first research.

4. CONCLUSION

This research designed and implemented using VHDL. The supporting software used to
implement VHDL is Xilinx ISE 8.1 i. The design in this journal has been successful because it
is in accordance with what is desired and has been tested and the results are appropriate. Like
in an encoder where it is assigned to produce a unique code which is then combined with the
original data into a codeword. In the decoder where it is assigned to parse the received
codeword and confirm whether the codeword received has an error or not. If an error occurs,
the data will be discarded while if no error occurs then the data will continue. The design
results is more efficient because when compared between each study, the components used
are fewer and the CRC design is as expected. From the use of hardware in this series, it is
expected that in the future it can be integrated with other systems.

REFERENCE

Forouzan, B. A., & Fegan, S. C. (2007). Data Communications and Networking. New York:

McGraw-Hill Higher Education.

Ghosh, D., Mitra, A., Mukhopadhyay, A., Dawn, A., & Ghosh, D. (2013). A Generalized Code
For Computing Cyclic Redundancy. International Journal of Students Research in
Technology & Management, 1(2), 192 - 202.

P, P. S., A, R., & Kotain, A. S. (2012). FPGA Implementation of Single Bit Error Correction using
CRC. International Journal of Computer Applications, 52(10), 2 - 6.

Saleh and Sudiro

ELKOMIKA – 68

Peterson, W. W., & Brown, D. T. (1961). Cyclic Codes for Error Detection. Proceedings of the
IRE, 49(1), 228-235.

Ritter, Terry. (1986, February 11). The Great CRC Mystery. Dr. Dobb's Journal of Software
Tools, hal. 26-34.

Saleh, A. A., Saleh, K. M., & S. A.-A. (2018). Design and Simulation of CRC Encoder and
Decoder Using VHDL. International Scientific Conference of Engineering Sciences, 1(3),

221-225.
Satran, J., Sheinwald, D., & Shimony, I. (2005). Out of Order Incremental CRC Computation.

IEEE Transactions On Computers, 54, 1178-1181.

