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ABSTRAK

Penelitian ini mengembangkan kerangka encoder—decoder berbasis CNN modular
untuk tugas image dehazing, mengganti bottleneck konvensional dengan
mekanisme token-mixing seperti FNet, Spatial-FNet, MLP-Mixer, dan gMLP.
Pipeline mencakup pra-pemrosesan adaptif (CLAHE, histogram matching),
augmentasi sintetik, serta pelatihan pada subset SOTS. Evaluasi numerik dan
visual menunjukkan peningkatan signifikan dibanding baseline: rata-rata PSNR
naik dari #18.4 dB menjadi ~23.0-24.0 dB dan SSIM meningkat dari ~0.75
menjadi #0.89-0.91. Temuan ini memberikan pedoman arsitektural dan strategi
pra-pemrosesan bagi sistem visi dunia nyata seperti kendaraan otonom.
Rekomendasi meliputi evaluasi pada dataset nyata lebih luas, tuning
hiperparameter, analisis efisiensi komputasi, dan latensi sistem.

Kata kunci: Image Dehazing, CNN, Token-mixing, Kendaraan otonom
ABSTRACT

This study develops a modular CNN encoder—decoder framework for single-image
dehazing by replacing the conventional bottleneck with interchangeable token-
mixing modules such as FNet, Spatial-FNet, MLP-Mixer, and gMLP-style designs.
The pipeline integrates adaptive preprocessing (CLAHE and histogram matching),
photometric augmentations, and training on a controlled subset of the SOTS
dataset. Comprehensive quantitative and qualitative evaluations demonstrate
substantial improvements over a baseline CNN, with mean PSNR increasing from
approximately 18.4 dB to the 23.0-24.0 dB range and SSIM rising from about 0.75
to roughly 0.89-0.91. However, several variants require careful hyperparameter
selection and loss-weight tuning to achieve stable performance. The results offer
practical guidance for deployment in real-world vision systems.

Keywords: Image dehazing, CNN, Modular Token-mixing, Autonomous driving

BHE
This is an open access article under the CC BY-SA license

ELKOMIKA - 69


http://creativecommons.org/licenses/by-sa/4.0/

Kholig, dkk

1. PENDAHULUAN

Citra berkabut (hazy image) menjadi tantangan serius dalam bidang visi komputer karena
penurunan kontras, pencahayaan yang tidak merata, dan kehilangan detail akibat hamburan
cahaya di atmosfer (Zheng, dkk, 2025). Kondisi tersebut menyebabkan sistem berbasis visi
komputer seperti kendaraan otonom, pemantauan lalu lintas, dan pengawasan keamanan
gagal mengenali objek secara akurat (Deshmukh, dkk, 2024). Sebagaimana dijelaskan oleh
Zheng, dkk partikel kabut menyebabkan cahaya menyebar dan terpantul, menghasilkan efek
buram serta menurunkan kejernihan citra. Hal ini menurunkan keandalan sistem seperti
deteksi objek, segmentasi semantik, dan pelacakan visual yang bergantung pada citra
berkualitas tinggi (Ayoub, dkk, 2025). Oleh karena itu, /image dehazing (penghilangan
kabut) menjadi langkah praproses penting untuk meningkatkan kualitas visual sebelum proses
analisis lanjutan (Gui, dkk, 2021).

Namun, pemrosesan citra berkabut merupakan masalah yang bersifat ///-posed karena banyak
variabel atmosferik yang tidak diketahui, seperti peta transmisi dan intensitas cahaya latar
belakang(Gui, dkk, 2022). Model fisika klasik seperti Dark Channel Prior (DCP) telah banyak
digunakan, tetapi performanya menurun pada citra dengan kabut tebal atau area terang
seperti langit (Golts, dkk, 2020). Selain itu, algoritma berbasis prior sering gagal
mempertahankan detail lokal, menghasilkan citra yang terlalu gelap atau berkontras tidak
alami(Filin, dkk, 2023). Penelitian terkini menunjukkan bahwa metode berbasis
pembelajaran mendalam (deep learning) mampu mengatasi keterbatasan ini karena dapat
mempelajari representasi fitur kompleks secara otomatis dari data (Dakshinamurthi, dkk,
2023). CNN (Convolutional Neural Network) secara khusus menjadi pilihan utama untuk tugas
dehazing berkat kemampuannya mengekstraksi fitur spasial secara hierarkis dan efisien
(Pavethra, dkk 2024) (Jing, dkk, 2024). Kondisi kabut/haze juga menjadi isu penting
pada skenario kendaraan otonom, karena penurunan kontras dan kejernihan citra dapat
mengganggu persepsi lingkungan dan menurunkan akurasi deteksi objek, sehingga
berimplikasi pada keselamatan sistem berbasis visi komputer. Sejalan dengan itu, pendekatan
berbasis deep learning tidak hanya berkembang pada CNN, tetapi juga pada model generatif
seperti CycleGAN yang memungkinkan translasi citra berkabut ke citra bersih tanpa pasangan
data (unpaired) relevan ketika ground-truth citra bersih sulit diperoleh pada kondisi jalan
nyata.(Sopian, dkk, 2025)

Arsitektur CNN encoder—decoder modern untuk dehazing mengadopsi desain modular yang
terdiri dari encoder untuk ekstraksi fitur, bottleneck untuk transformasi representasi, dan
decoder untuk rekonstruksi spasial (Sharma, dkk 2024). Pada penelitian ini, digunakan
mekanisme token-mixing pada lapisan bottleneck untuk menangkap konteks global, meliputi
self-attention (Vaswani, dkk, 2023), FNet berbasis Fourier Transform (Thorp, dkk, 2022),
MLP-Mixer (Tolstikhin, dkk, 2021), dan gMLP (Liu, dkk, 2021). Pendekatan ini
memungkinkan jaringan memahami hubungan jangka panjang antar piksel tanpa kehilangan
detail lokal. Selain itu, proses preprocessing seperti Contrast Limited Adaptive Histogram
Equalization (CLAHE)(Stimper, dkk, 2019) dan Aistogram matching diterapkan untuk
menormalkan distribusi intensitas citra dan meningkatkan kontras sebelum pemrosesan oleh
CNN. Strategi ini memperkaya variasi data dan meningkatkan kemampuan generalisasi model
terhadap kondisi kabut nyata.(Gonzalez, dkk, 2018)

Evaluasi kuantitatif dan kualitatif menunjukkan bahwa pendekatan CNN modular dengan
token-mixing dan preprocessing adaptif mampu menghasilkan peningkatan signifikan dalam
metrik PSNR dan SSIM dibandingkan metode konvensional(Heaton, dkk, 2018). Misalnya,
modifikasi berbasis token-reduction dengan CLAHE, melampaui baseline CNN. Peningkatan ini
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juga tercermin pada hasil visual yang menunjukkan detail tekstur lebih tajam dan warna yang
lebih alami (Szeliski, 2021). Penelitian ini memiliki kesamaan dengan beberapa studi pada
berkas referensi dalam penggunaan pendekatan pembelajaran mendalam dan praktik
preprocessing untuk meningkatkan performa model pada dataset citra yang relatif kecil,
misalnya aplikasi CNN (Supandi, dkk., 2025) dan varian pra-latih (MobileNetV2)(Lestari,
dkk, 2024) untuk klasifikasi dan Mask-RCNN (Tyas, dkk, 2023) untuk segmentasi, yang
menekankan ekstraksi fitur visual dan optimisasi arsitektur untuk tugas spesifik. Namun,
berbeda dari penelitian-penelitian tersebut yang berfokus pada klasifikasi atau segmentasi
objek berbasis fitur warna/struktur, penelitian ini berorientasi pada restorasi citra (dehazing)
dengan tujuan memperbaiki kualitas input bagi sistem visi kendaraan otonom.

2. METODE PENELITIAN

2.1 Alur Penelitian

Penelitian dimulai dari tahap pengumpulan dan pemilihan dataset, dilanjutkan dengan tahapan
pra-pemrosesan citra yang meliputi normalisasi ukuran dan intensitas, kemudian pembentukan
partisi data untuk pelatihan dan validasi. Selanjutnya dilakukan perancangan dan implementasi
beberapa varian arsitektur model berdasar arsitektur encoder—decoder, pelatihan model
dengan strategi augmentasi dan loss yang sesuai tiap varian, evaluasi pada data validasi, serta
pengujian akhir pada citra uji terpisah. Alur ini digambarkan secara sistematis pada Gambar 1
sehingga memudahkan reproduksi eksperimen dan penelusuran setiap tahap eksperimen.

M BUILDING MODEL TRAINING
¥

STORAGE MODEL 5
HS

—

h 4

RESULT IMAGE FREDICTION TESTING TEST IMAGE
. J

Gambar 1. Diagram Proses Metodelogi Penelitian

2.2 Dataset dan Pembagian Data

Dataset yang digunakan merupakan bagian dari Synthetic Object Testing Sets (SOTS) pada
platform Kaggle dan berjumlah 200 citra. Dari keseluruhan 200 citra tersebut, pembagian data
untuk pelatihan dan validasi dilakukan dengan komposisi 80% untuk ¢raining dan 20% untuk
validation, yang secara numerik menghasilkan 160 citra untuk pelatihan dan 40 citra untuk
validasi. Selain itu, disediakan satu himpunan uji terpisah berukuran 9 citra yang digunakan
sebagai held-out test set untuk pengukuran akhir performa model.

2.3 Pra-pemrosesan dan Augmentasi

Tahapan pra-pemrosesan dasar yang diterapkan pada semua eksperimen meliputi perubahan
ukuran (resize) citra ke dimensi masukan model dan normalisasi intensitas pixel. Beberapa
modifikasi menambahkan langkah-langkah pra-pemrosesan khusus seperti Aistogram-
matching dan CLAHE (Contrast Limited Adaptive Histogram Equalization) untuk menormalkan
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distribusi intensitas dan meningkatkan kontras lokal, sebagaimana dirinci pada perbandingan
karakteristik model.

2.4 Arsitektur Model dan Modifikasi

Secara garis besar arsitektur yang menjadi dasar eksperimen adalah sebuah arsitektur CNN
encoder—decoder standar yang mengandung mekanisme seperti Batch Normalization,
Dropout, skip-add, dan bottleneck dengan self-attention pada titik sempitnya (bottleneck).
Arsitektur dasar ini dan lima modifikasi utamanya dijabarkan di bawah sesuai ringkasan pada
Gambar 2.
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Gambar 2. Model Arsitektur Penghapusan Kabut

2.4.1 Baseline (Arsitektur CNN standar)

Model baseline adalah encoder—decoder berbasis CNN yang menggunakan operasi konvolusi
berulang untuk ekstraksi fitur pada encoder dan penggabungan informasi spasial pada
decoder. Mekanisme regulasi berupa BatchNorm dan Dropout dipakai untuk stabilitas pelatihan
dan mencegah overfitting, sedangkan koneksi skip-add mempertahankan informasi resolusi
tinggi yang hilang selama down-sampling. Fungsi loss utama yang digunakan pada baseline
adalah Mean Absolute Error (MAE), yang mengukur perbedaan intensitas pixel antara keluaran
model dan citra bersih target. Spesifikasi ini tercantum pada Tabel 1.
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Tabel 1. Perbandingan Karakteristik Model

Model Modifikasi dari Program Baseline Penjelasan Modifikasi
Arsitektur CNN encoder—decoder standar
dengan BatchNorm, Dropout, skip-add,
CNN bottleneck menggunakan self-attention;
preprocessing hanya resize/normalisasi; loss
utama MAE.
Mengganti/menambah mekanisme FNet melakukan token-mixing di domain
bottleneck attention dengan FNet frekuensi untuk menangkap konteks global
Modifikasi 1 (FFT-based) + augmentasi dengan biaya komputasi lebih rendah;
fotometrik/geometrik dan simulasi augmentasi sintetis meningkatkan
kabut. generalisasi pada dataset kecil.
Menambahkan preprocessing Preprocessing menormalkan distribusi
histogram-matching dan CLAHE, serta intensitas antara domain, sementara Spatial-
Modifikasi 2 mengaplikasikan FNet pada feature- FNet memadukan informasi frekuensi pada
map (spatial FNet). level fitur untuk memperbaiki rekonstruksi
struktur visual.
Menempatkan MLP-Mixer di bottleneck MLP-Mixer melakukan token-mixing lewat
dengan patching pada feature-map dense layer sehingga menggabungkan
Modifikasi menggantikan attention. informasi spasial-token secara efektif dan
odifikasi 3 : . )
mengoptimalkan pemulihan detail struktural
dengan kompleksitas parameter yang
terkontrol.
MLP-Mixer terstruktur (configurable Bertujuan meningkatkan kualitas perseptual
patch/size, default input 128%x128) + keluaran; membutuhkan penyetelan
Modifikasi 4 loss gabungan (MAE + (1-SSIM) = hyperparameter (ukuran input, bobot loss)
perceptual) dan augmentasi lanjutan. agar konvergensi dan kinerja numerik
optimal.
Mengaplikasikan gMLP-style: pooling Pooling mengurangi panjang urutan token
atau token-reduction sebelum token- sehingga menekan biaya komputasi saat
Modifikasi 5 mixing lalu upsample kembali; mixing, mempertahankan konteks global

ditambah CLAHE/histmatch.

namun berpotensi kehilangan detail halus
yang memerlukan tuning pool size.

2.4.2 Modifikasi 1 — FNet (FFT-based) + Augmentasi Sintetis

Modifikasi 1 menggantikan mekanisme bottleneck attention tradisional dengan FNet (token-
mixing berbasis FFT) untuk menangkap konteks global pada biaya komputasi rendah. Pada
proses forward, encoder CNN mengekstrak fitur, lalu FNet melakukan pencampuran token di
bottleneck untuk menyebarkan konteks global, dan decoder merekonstruksi citra bersih.
Gambar 3 memperlihatkan arsitektur model Modifikasi 1.

de HHHHH
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Gambar 3. Arsitektur Model pada Modifikasi 1
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2.4.3 Modifikasi 2 — Spatial-FNet + Histogram-matching/CLAHE

Modifikasi 2 menambahkan pra-pemrosesan berbasis histogram-matching dan CLAHE untuk
menormalkan distribusi intensitas antardomain, serta menerapkan FNet pada peta fitur
internal (spatial FVet). Dengan pendekatan ini, pencampuran di domain frekuensi tidak hanya
terjadi pada token input awal, tetapi juga pada representasi fitur selama pemrosesan, sehingga
model menggabungkan informasi frekuensi dan spasial pada tingkat fitur. Proses kerjanya
dimulai dari citra input yang menjalani pra-pemrosesan (histogram-matching/CLAHE),
kemudian melewati encoder; pada bottleneck, spatial-FNet melakukan pencampuran token
pada peta fitur, lalu decoder merekonstruksi citra akhir. Kombinasi tersebut ditujukan
meningkatkan rekonstruksi struktur visual yang sangat peka terhadap perbedaan sebaran
intensitas. Gambar 4 menunjukkan arsitektur Modifikasi 2.

de A

ICONV2DTRANSPOSE CONV2D

PREPROCESSING AUGMENTATION
256Xx256X32 256x256x3

CONV2D Spatlal Fnet CONV2D
32x256%256 32x256x256

Gambar 4. Arsitektur Model pada Modifikasi 2

2.4.4 Modifikasi 3 — MLP-Mixer di Bottleneck

Pada Modifikasi 3, mekanisme attention di bottleneck digantikan oleh MLP-Mixer yang bekerja
dengan membagi feature-map menjadi patches. Setiap patch diproses melalui lapisan-lapisan
fully-connected (dense) sehingga terjadi pertukaran konteks antar-token secara efektif tanpa
mengandalkan perhatian tradisional. Proses kerja mencakup pemisahan peta fitur menjadi
sejumlah patch, pemrosesan antar-token melalui lapisan MLP untuk pertukaran konteks, dan
kemudian penggabungan kembali patch sebelum diteruskan ke decoder. Pendekatan ini
bertujuan untuk memulihkan detail struktural citra sambil menjaga kompleksitas parameter
tetap terkontrol. Gambar 5 mengilustrasikan arsitektur Modifikasi 3.

dett HHm

PREPROCESSING Augmentation Conv2D MLP Mixerlayer Conv2D ConvZDTranspose
(32x256x256) (32x256x256) (256x256x32)

Gambar 5. Arsitektur Model pada Modifikasi 3

2.4.5 Modifikasi 4 — MLP-Mixer Terstruktur + Loss Gabungan

Modifikasi 4 mengembangkan Modifikasi 3 dengan MLP-Mixer yang lebih terstruktur (ukuran
patch dapat dikonfigurasi; input default 128x128) serta penerapan fungsi loss gabungan.
Strategi ini bertujuan meningkatkan kualitas perseptual keluaran agar hasil rekonstruksi tidak
hanya minim kesalahan numerik tetapi juga tampil lebih tajam dan alami secara visual. Gambar
6 memperlihatkan arsitektur Modifikasi 4.

ELKOMIKA - 74



Enhancing Hazy Image Quality with a Modular CNN Encoder—Decoder
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Gambar 6. Arsitektur Model pada Modifikasi 4

2.4.6 Modifikasi 5 — gMLP-style dengan Token-reduction + CLAHE/Histmatch
Modifikasi 5 mengadopsi gaya gMLP dengan mekanisme pooling/token-reduction sebelum
tahap token-mixing, dilanjutkan upsampling sebelum decoding. Dengan mengurangi panjang
urutan token, pendekatan ini menekan biaya komputasi pada tahap pencampuran, tetap
mempertahankan konteks global sekaligus berisiko menghilangkan beberapa detail halus yang
memerlukan penyetelan ukuran pooling yang tepat. Gambar 7 menampilkan arsitektur
Modifikasi 5.

A Al

PREPROCESSING Augmentation Conv2D gMLPBlock Conv2D
(32x256x256) (32x256x256)

CONV2DTRANSPOSE CONV2D
256x256x32 256x256x3; x32; x16

Gambar 7. Arsitektur Model pada Modifikasi 5

2.5 Prosedur Pelatihan, Validasi, dan Pengujian

Pelatihan setiap varian model mengikuti prosedur yang sama: data pelatihan (160 citra)
diberikan augmentasi dan pra-pemrosesan sesuai desain eksperimen, lalu model dilatih untuk
meminimalkan fungsi loss tertentu. Kinerja model dipantau pada set validasi (40 citra) untuk
memilih checkpoint terbaik dan menentukan early stopping. Setelah model terbaik terpilih
berdasarkan metrik pada data validasi, evaluasi akhir dilakukan pada himpunan uji terpisah (9
citra) untuk mengukur kemampuan generalisasi model pada kondisi yang belum pernah dilihat
sebelumnya.

3. HASIL DAN PEMBAHASAN
Pada bagian hasil dan pembahasan disajikan evaluasi kinerja model dehazing secara kuantitatif
dan kualitatif, dimulai dari perbandingan metrik PSNR dan SSIM pada baseline CNN serta lima
varian modifikasi untuk menilai peningkatan kualitas rekonstruksi dan konsistensi hasil.
Selanjutnya, analisis visual pada kondisi outdoor, indoor, dan citra nyata digunakan untuk

meninjau pemulihan kontras, detail, dan kestabilan warna, sekaligus mengidentifikasi artefak
seperti residu kabut, pergeseran tonal, dan potensi over-enhancement.
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Gambar 8. Perbandingan Nilai PSNR untuk Setiap Gambar Uji

Gambar 8 dan Gambar 9 memperlihatkan perbandingan PSNR dan SSIM untuk setiap gambar
uji. Secara numerik, model baseline CNN mencapai PSNR rata-rata #18.42 dB dan SSIM rata-
rata =0.747, sedangkan semua modifikasi arsitektur memberikan peningkatan signifikan
dengan PSNR rata-rata berkisar ~#22.98-23.95 dB dan SSIM rata-rata #0.894-0.911.

Sum of SSIM MOD2 Sum of SSIM MOD5 Sum of SSIM MOD4 Sum of SSIM MOD3 Sum of SSIM CNN  Sum of SSIM MOD1

08 - .~ &= Sum of SSIM MOD2
~ N\ - Sum of SSIM MOD5
o » \ = um of SSIM MOD
7

um of SSIM MOD4

um of SSIM MOD3
of SSIM CNN

um of SSIM MOD1

Gambar Uji
GAMBAR -

Gambar 9. Perbandingan Nilai SSIM untuk Setiap Gambar Uji

Data pada Tabel 2 menunjukkan bahwa hasil baseline mengalami variasi yang lebih besar dan
beberapa sampel memiliki PSNR rendah, mencerminkan kegagalan relatif dalam memulihkan
citra yang sangat terdegradasi. Secara keseluruhan, peningkatan angka tersebut menandakan
perbaikan baik dalam kesamaan piksel murni (PSNR) maupun kesamaan struktural/perseptual
(SSIM), yang lebih relevan untuk kualitas visual.

Tabel 2. Hasil Pengujian Model CNN

Model PSNR (dB) SSIM
20,62 0,8027
18,69 0,7587
22,17 0,8332
20,36 0,7835

CNN 12,64 0,5626
15,8 0,6533
15,54 0,7507
20,61 0,7851
19,36 0,7898
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Modifikasi 1 menunjukkan peningkatan substansial dibandingkan baseline: PSNR rata-rata
~23.74 dB dan SSIM rata-rata 0.901. Nilai pada Tabel 3 memperlihatkan PSNR sangat tinggi
pada beberapa sampel dan SSIM mendekati atau melebihi 0.90 pada mayoritas sampel.
Peningkatan ini sesuai dengan desain Modifikasi 1 yang menggantikan bottleneck attention
dengan FNet (token-mixing berbasis FFT) dan menggunakan augmentasi sintetis, yang
bersama-sama meningkatkan kemampuan model menangkap konteks global dan memperbaiki
generalisasi pada dataset terbatas. Hasil pada Tabel 3 mendukung argumen bahwa
pemrosesan di domain frekuensi (FNet) beserta augmentasi sintetis efektif meningkatkan
rekonstruksi citra dehazing.

Tabel 3. Hasil Pengujian Modifikasi 1

Model PSNR (dB) SSIM
26,6941 0,9068
22,3736 0,8881
26,6358 0,9531
23,2667 0,9213

Modifikasi 1 19,487 0,8338
22,5615 0,8879
22,0321 0,873968
24,2468 0,9208
26,3308 0,9199

Modifikasi 2 mempertahankan kinerja tinggi dengan PSNR rata-rata ~23.58 dB dan SSIM rata-
rata #0.908. Data pada Tabel 4 menunjukkan Modifikasi 2 cenderung menghasilkan nilai SSIM
sangat baik, mengindikasikan rekonstruksi struktur visual yang sangat baik. Hal ini konsisten
dengan strategi pra-pemrosesan (histogram-matching dan CLAHE) yang menormalkan
distribusi intensitas sehingga spatial-FNet dapat bekerja lebih stabil pada level fitur dan
mempertahankan struktur lokal.

Table 4. Hasil Pengujian Modifikasi 2

Model PSNR (dB) SSIM
26,1 0,9078
25,85 0,9041
22,85 0,9528
22,6 0,9219

Modifikasi 2 20,15 0,8533
22,33 0,8877
22,03 0,8829
25,26 0,9342
25,05 0,93

Modifikasi 3 memperlihatkan peningkatan terhadap baseline dengan rata-rata PSNR = 22.98
dB dan SSIM = 0.894. Nilai-nilai pada Tabel 5 menunjukkan konsistensi performa pada
sebagian besar sampel, menandakan bahwa MLP-Mixer mampu menggabungkan konteks
spasial-token secara efektif dan memulihkan detail struktural tanpa kompleksitas attention
penuh.
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Table 5. Hasil Pengujian Modifikasi 3

Model PSNR (dB) SSIM
22,53 0,8555
22,07 0,8936
24,99 0,9428
22,59 0,9088

Modifikasi 3 19,64 0,8318
23,18 0,8895
22,56 0,8755
24,19 0,9242
25,09 0,924

Modifikasi 4 menampilkan variasi hasil yang lebih besar; PSNR rata-rata %21.16 dB dan SSIM
rata-rata =0.867, secara umum lebih rendah dibanding modifikasi lain kecuali baseline. Tabel
6 menunjukkan beberapa sampel dengan PSNR dan SSIM tinggi serta beberapa sampel
dengan penurunan performa, pola yang konsisten dengan sifat Modifikasi 4 yang
memperkenalkan loss gabungan dan konfigurasi patch yang lebih sensitif. Artinya, Modifikasi
4 dapat menghasilkan kualitas perseptual yang sangat baik jika bobot loss dan Ayperparameter
disetel dengan tepat, namun juga rentan terhadap ketidaktepatan penyetelan sehingga
menimbulkan variasi performa antarsampel.

Table 6. Hasil Pengujian Modifikasi 4"

Model PSNR (dB) SSIM
23,08 0,8597
21,16 0,8796
25,21 0,9259
23,12 0,9163

Modifikasi 4 15,29 0,7599
18,77 0,8286
17,33 0,8273
23,26 0,9078
23,25 0,8938

Modifikasi 5 mencatat performa terbaik secara agregat: PSNR rata-rata ~23.95 dB dan SSIM
rata-rata =0.911. Tabel 7 menunjukkan beberapa nilai PSNR/SSIM tertinggi pada kumpulan
sampel (misalnya PSNR =27.36 dB dengan SSIM =0.9255), menandakan kemampuan
Modifikasi 5 menjaga konteks global melalui token-reduction sekaligus memulihkan detail
struktural relevan. Hasil ini mengindikasikan bahwa strategi pooling/token-reduction yang hati-
hati dapat menekan biaya komputasi selama pencampuran token tanpa mengorbankan
kualitas rekonstruksi jika ukuran pooling dioptimalkan; namun terdapat risiko kehilangan detail
halus jika ukuran pooling tidak disesuaikan dengan tepat. Selain unggul secara metrik,
keluaran Modifikasi 5 cenderung lebih stabil pada variasi tingkat kabut karena kombinasi
token-reduction dan pra-pemrosesan adaptif membantu menyeimbangkan pemulihan kontras
dengan konservasi struktur utama.
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Table 7. Hasil Pengujian Modifikasi 5

Model PSNR (dB) SSIM
27,36 0,9255
22,54 0,8926
26,76 0,9515
23,13 0,9267

Modifikasi 5 19,19 0,8425
22,87 0,8959
22,27 0,8927
25,86 0,9415
25,56 0,9313

Pada Gambar 10 disajikan perbandingan hasil dehazing pada kondisi outdoor dengan urutan
kolom Hazy (citra input berkabut), CNN (prediksi model baseline), (1)—(5) (prediksi dari lima
varian model hasil modifikasi), serta GT (citra bersih/ ground truth). Secara kualitatif, citra Hazy
menunjukkan penurunan kontras global dan hilangnya detail pada area berjarak (misalnya
tekstur fasad bangunan, batas vegetasi, serta permukaan jalan/rel) akibat dominasi kabut
yang meningkatkan veiling light. Hasil CNN telah mampu mengurangi kabut dan memulihkan
sebagian struktur, namun masih tampak adanya residu kabut pada area tertentu serta
ketidakstabilan reproduksi warna/kontras pada beberapa sampel (misalnya langit cenderung
kurang natural atau bayangan menjadi lebih pekat).

Dibandingkan baseline, keluaran model (1)-(5) umumnya memperlihatkan pemulihan
visibilitas yang lebih baik melalui peningkatan kontras dan ketegasan tepi objek, sehingga
detail visual tampak lebih mendekati GT.

CNN (1) (2) 3) (4) (5)
Gambar 10. Visualisasi Hasil Pengujian pada Kondisi Ourdoor

Gambar 11 menampilkan hasil dehazing pada kondisi indoor dengan format kolom yang sama
(Hazy, CNN, (1)-(5), dan GT). Pada skenario indoor, dehazing lebih menantang karena
pencahayaan tidak merata, pantulan, serta kontras terang—gelap, sehingga citra Hazy tampak
washed-out dan detail kecil mudah hilang. Prediksi CNN mampu mengurangi kabut, tetapi
pada beberapa contoh masih muncul ketidakkonsistenan tonal seperti citra lebih gelap atau
color cast sehingga kemiripannya terhadap GT belum stabil. Secara umum, modifikasi (1)—(5)
meningkatkan keterbacaan struktur dan kontras lokal sehingga detail spasial lebih jelas dan
hasil lebih mendekati GT, namun peningkatan kontras juga berpotensi memicu amplifikasi
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noise pada area gelap, pergeseran warna, atau residu kabut tipis pada area backlight; karena
itu diperlukan keseimbangan antara penguatan detail dan kestabilan warna agar rekonstruksi
tetap realistis lintas adegan.

Hazy CNN (1) (2) 3) (4) (5)
Gambar 11. Visualisasi Hasil Pengujian pada Kondisi Indoor

Gambar 12 menyajikan perbandingan hasil prediksi dehazing pada citra nyata, yang terdiri
atas (a) citra hazy sebagai masukan, (b) keluaran model baseline CNN, dan (c) keluaran model
Modifikasi 5 sebagai model dengan nilai agregat tertinggi. Berdasarkan Gambar 12, model
baseline CNN (b) cenderung menghasilkan perubahan tonal dan pergeseran warna yang lebih
kuat, ditunjukkan oleh tampilan yang lebih gelap serta munculnya bias warna
kebiruan/keunguan, sehingga naturalitas citra menurun meskipun terjadi peningkatan kontras
pada beberapa area. Sebaliknya, model Modifikasi 5 (c) memberikan hasil yang lebih stabil
secara visual

a) b) c)

Gambar 12. Hasil Prediksi pada Citra Nyata; a) Hazy; b) Baseline CNN; c) Modifikasi 5
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4. KESIMPULAN

Berdasarkan serangkaian eksperimen dan analisis yang dijelaskan mulai dari pendahuluan
hingga hasil penelitian, dapat disimpulkan bahwa integrasi arsitektur CNN encoder—decoder
dengan mekanisme token-mixing modern (FNet/FFT-based, MLP-Mixer, gMLP) serta strategi
pra-pemrosesan adaptif (CLAHE dan histogram-matching) secara konsisten meningkatkan
kualitas pemulihan citra berkabut dibandingkan baseline CNN konvensional; hal ini tercermin
pada kenaikan metrik numerik dan perbaikan perseptual yang nyata, di mana baseline CNN
memiliki kinerja rata-rata PSNR = 18.42 dB dan SSIM = 0.747, sedangkan variasi modifikasi
menghasilkan rentang rata-rata PSNR = 22.98-23.95 dB dan SSIM = 0.894-0.911, dengan
Modifikasi 1 (FNet + augmentasi) dan Modifikasi 5 (gMLP-style + CLAHE/histmatch)
menempati posisi terbaik secara agregat, namun demikian hasil eksperimen juga menunjukkan
bahwa meskipun beberapa varian berpotensi menghasilkan keluaran perseptual yang sangat
baik, pendekatan tersebut rentan terhadap varians performa apabila hyperparameter dan
bobot loss tidak disetel secara cermat, sehingga temuan ini menegaskan pentingnya
penyetelan hyperparameter dan pemilihan bobot loss yang teliti untuk merealisasikan
keuntungan teoretis metode-metode tersebut.
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