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ABSTRAK 

Penelitian ini mengembangkan kerangka encoder–decoder berbasis CNN modular 
untuk tugas image dehazing, mengganti bottleneck konvensional dengan 
mekanisme token-mixing seperti FNet, Spatial-FNet, MLP-Mixer, dan gMLP. 
Pipeline mencakup pra-pemrosesan adaptif (CLAHE, histogram matching), 
augmentasi sintetik, serta pelatihan pada subset SOTS. Evaluasi numerik dan 
visual menunjukkan peningkatan signifikan dibanding baseline: rata-rata PSNR 
naik dari ≈18.4 dB menjadi ≈23.0–24.0 dB dan SSIM meningkat dari ≈0.75 
menjadi ≈0.89–0.91. Temuan ini memberikan pedoman arsitektural dan strategi 
pra-pemrosesan bagi sistem visi dunia nyata seperti kendaraan otonom. 
Rekomendasi meliputi evaluasi pada dataset nyata lebih luas, tuning 
hiperparameter, analisis efisiensi komputasi, dan latensi sistem. 

Kata kunci: Image Dehazing, CNN, Token-mixing, Kendaraan otonom 

ABSTRACT 

This study develops a modular CNN encoder–decoder framework for single-image 
dehazing by replacing the conventional bottleneck with interchangeable token-
mixing modules such as FNet, Spatial-FNet, MLP-Mixer, and gMLP-style designs. 
The pipeline integrates adaptive preprocessing (CLAHE and histogram matching), 
photometric augmentations, and training on a controlled subset of the SOTS 
dataset. Comprehensive quantitative and qualitative evaluations demonstrate 
substantial improvements over a baseline CNN, with mean PSNR increasing from 
approximately 18.4 dB to the 23.0–24.0 dB range and SSIM rising from about 0.75 
to roughly 0.89–0.91. However, several variants require careful hyperparameter 
selection and loss-weight tuning to achieve stable performance. The results offer 
practical guidance for deployment in real-world vision systems. 
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1. PENDAHULUAN 

Citra berkabut (hazy image) menjadi tantangan serius dalam bidang visi komputer karena 
penurunan kontras, pencahayaan yang tidak merata, dan kehilangan detail akibat hamburan 
cahaya di atmosfer (Zheng, dkk, 2025). Kondisi tersebut menyebabkan sistem berbasis visi 
komputer seperti kendaraan otonom, pemantauan lalu lintas, dan pengawasan keamanan 
gagal mengenali objek secara akurat (Deshmukh, dkk, 2024). Sebagaimana dijelaskan oleh 
Zheng, dkk partikel kabut menyebabkan cahaya menyebar dan terpantul, menghasilkan efek 
buram serta menurunkan kejernihan citra. Hal ini menurunkan keandalan sistem seperti 
deteksi objek, segmentasi semantik, dan pelacakan visual yang bergantung pada citra 
berkualitas tinggi (Ayoub, dkk, 2025). Oleh karena itu, image dehazing (penghilangan 
kabut) menjadi langkah praproses penting untuk meningkatkan kualitas visual sebelum proses 
analisis lanjutan (Gui, dkk, 2021). 
 

Namun, pemrosesan citra berkabut merupakan masalah yang bersifat ill-posed karena banyak 
variabel atmosferik yang tidak diketahui, seperti peta transmisi dan intensitas cahaya latar 
belakang(Gui, dkk, 2022). Model fisika klasik seperti Dark Channel Prior (DCP) telah banyak 
digunakan, tetapi performanya menurun pada citra dengan kabut tebal atau area terang 
seperti langit (Golts, dkk, 2020). Selain itu, algoritma berbasis prior sering gagal 
mempertahankan detail lokal, menghasilkan citra yang terlalu gelap atau berkontras tidak 
alami(Filin, dkk, 2023). Penelitian terkini menunjukkan bahwa metode berbasis 
pembelajaran mendalam (deep learning) mampu mengatasi keterbatasan ini karena dapat 
mempelajari representasi fitur kompleks secara otomatis dari data (Dakshinamurthi, dkk, 
2023). CNN (Convolutional Neural Network) secara khusus menjadi pilihan utama untuk tugas 
dehazing berkat kemampuannya mengekstraksi fitur spasial secara hierarkis dan efisien 
(Pavethra,  dkk 2024) (Jing, dkk, 2024). Kondisi kabut/haze juga menjadi isu penting 
pada skenario kendaraan otonom, karena penurunan kontras dan kejernihan citra dapat 
mengganggu persepsi lingkungan dan menurunkan akurasi deteksi objek, sehingga 
berimplikasi pada keselamatan sistem berbasis visi komputer. Sejalan dengan itu, pendekatan 
berbasis deep learning tidak hanya berkembang pada CNN, tetapi juga pada model generatif 
seperti CycleGAN yang memungkinkan translasi citra berkabut ke citra bersih tanpa pasangan 
data (unpaired) relevan ketika ground-truth citra bersih sulit diperoleh pada kondisi jalan 
nyata.(Sopian, dkk, 2025) 
 

Arsitektur CNN encoder–decoder modern untuk dehazing mengadopsi desain modular yang 
terdiri dari encoder untuk ekstraksi fitur, bottleneck untuk transformasi representasi, dan 
decoder untuk rekonstruksi spasial (Sharma, dkk 2024). Pada penelitian ini, digunakan 
mekanisme token-mixing pada lapisan bottleneck untuk menangkap konteks global, meliputi 
self-attention (Vaswani, dkk, 2023), FNet berbasis Fourier Transform (Thorp, dkk, 2022), 
MLP-Mixer (Tolstikhin, dkk, 2021), dan gMLP (Liu, dkk, 2021). Pendekatan ini 
memungkinkan jaringan memahami hubungan jangka panjang antar piksel tanpa kehilangan 
detail lokal. Selain itu, proses preprocessing seperti Contrast Limited Adaptive Histogram 
Equalization (CLAHE)(Stimper, dkk, 2019) dan histogram matching diterapkan untuk 
menormalkan distribusi intensitas citra dan meningkatkan kontras sebelum pemrosesan oleh 
CNN. Strategi ini memperkaya variasi data dan meningkatkan kemampuan generalisasi model 
terhadap kondisi kabut nyata.(Gonzalez, dkk, 2018) 
 

Evaluasi kuantitatif dan kualitatif menunjukkan bahwa pendekatan CNN modular dengan 
token-mixing dan preprocessing adaptif mampu menghasilkan peningkatan signifikan dalam 
metrik PSNR dan SSIM dibandingkan metode konvensional(Heaton, dkk, 2018). Misalnya, 
modifikasi berbasis token-reduction dengan CLAHE, melampaui baseline CNN. Peningkatan ini 



Enhancing Hazy Image Quality with a Modular CNN Encoder–Decoder 

ELKOMIKA – 71 

juga tercermin pada hasil visual yang menunjukkan detail tekstur lebih tajam dan warna yang 
lebih alami (Szeliski, 2021). Penelitian ini memiliki kesamaan dengan beberapa studi pada 
berkas referensi dalam penggunaan pendekatan pembelajaran mendalam dan praktik 
preprocessing untuk meningkatkan performa model pada dataset citra yang relatif kecil, 
misalnya aplikasi CNN (Supandi, dkk., 2025) dan varian pra-latih (MobileNetV2)(Lestari, 
dkk, 2024) untuk klasifikasi dan Mask-RCNN (Tyas, dkk, 2023) untuk segmentasi, yang 
menekankan ekstraksi fitur visual dan optimisasi arsitektur untuk tugas spesifik. Namun, 
berbeda dari penelitian-penelitian tersebut yang berfokus pada klasifikasi atau segmentasi 
objek berbasis fitur warna/struktur, penelitian ini berorientasi pada restorasi citra (dehazing) 
dengan tujuan memperbaiki kualitas input bagi sistem visi kendaraan otonom. 

2. METODE  PENELITIAN 

2.1 Alur Penelitian 
Penelitian dimulai dari tahap pengumpulan dan pemilihan dataset, dilanjutkan dengan tahapan 
pra-pemrosesan citra yang meliputi normalisasi ukuran dan intensitas, kemudian pembentukan 
partisi data untuk pelatihan dan validasi. Selanjutnya dilakukan perancangan dan implementasi 
beberapa varian arsitektur model berdasar arsitektur encoder–decoder, pelatihan model 
dengan strategi augmentasi dan loss yang sesuai tiap varian, evaluasi pada data validasi, serta 
pengujian akhir pada citra uji terpisah. Alur ini digambarkan secara sistematis pada Gambar 1 
sehingga memudahkan reproduksi eksperimen dan penelusuran setiap tahap eksperimen.  
 
 

 
 

Gambar 1. Diagram Proses Metodelogi Penelitian 

2.2  Dataset dan Pembagian Data 
Dataset yang digunakan merupakan bagian dari Synthetic Object Testing Sets (SOTS) pada 
platform Kaggle dan berjumlah 200 citra. Dari keseluruhan 200 citra tersebut, pembagian data 
untuk pelatihan dan validasi dilakukan dengan komposisi 80% untuk training dan 20% untuk 
validation, yang secara numerik menghasilkan 160 citra untuk pelatihan dan 40 citra untuk 
validasi. Selain itu, disediakan satu himpunan uji terpisah berukuran 9 citra yang digunakan 
sebagai held-out test set untuk pengukuran akhir performa model.  
 
2.3  Pra-pemrosesan dan Augmentasi 
Tahapan pra-pemrosesan dasar yang diterapkan pada semua eksperimen meliputi perubahan 
ukuran (resize) citra ke dimensi masukan model dan normalisasi intensitas pixel. Beberapa 
modifikasi menambahkan langkah-langkah pra-pemrosesan khusus seperti histogram-
matching dan CLAHE (Contrast Limited Adaptive Histogram Equalization) untuk menormalkan 
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distribusi intensitas dan meningkatkan kontras lokal, sebagaimana dirinci pada perbandingan 
karakteristik model.  
 
2.4 Arsitektur Model dan Modifikasi 
Secara garis besar arsitektur yang menjadi dasar eksperimen adalah sebuah arsitektur CNN 
encoder–decoder standar yang mengandung mekanisme seperti Batch Normalization, 
Dropout, skip-add, dan bottleneck dengan self-attention pada titik sempitnya (bottleneck). 
Arsitektur dasar ini dan lima modifikasi utamanya dijabarkan di bawah sesuai ringkasan pada 
Gambar 2. 

 
 

Gambar 2. Model Arsitektur Penghapusan Kabut 

 
2.4.1 Baseline (Arsitektur CNN standar) 
Model baseline adalah encoder–decoder berbasis CNN yang menggunakan operasi konvolusi 
berulang untuk ekstraksi fitur pada encoder dan penggabungan informasi spasial pada 
decoder. Mekanisme regulasi berupa BatchNorm dan Dropout dipakai untuk stabilitas pelatihan 
dan mencegah overfitting, sedangkan koneksi skip-add mempertahankan informasi resolusi 
tinggi yang hilang selama down-sampling. Fungsi loss utama yang digunakan pada baseline 
adalah Mean Absolute Error (MAE), yang mengukur perbedaan intensitas pixel antara keluaran 
model dan citra bersih target. Spesifikasi ini tercantum pada Tabel 1. 
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Tabel 1. Perbandingan Karakteristik Model 

 
Model Modifikasi dari Program Baseline Penjelasan Modifikasi  

CNN 

 Arsitektur CNN encoder–decoder standar 

dengan BatchNorm, Dropout, skip-add, 

bottleneck menggunakan self-attention; 
preprocessing hanya resize/normalisasi; loss 

utama MAE. 

Modifikasi 1 

Mengganti/menambah mekanisme 
bottleneck attention dengan FNet 

(FFT-based) + augmentasi 
fotometrik/geometrik dan simulasi 

kabut. 

FNet melakukan token-mixing di domain 
frekuensi untuk menangkap konteks global 

dengan biaya komputasi lebih rendah; 
augmentasi sintetis meningkatkan 

generalisasi pada dataset kecil. 

Modifikasi 2 

Menambahkan preprocessing 
histogram-matching dan CLAHE, serta 

mengaplikasikan FNet pada feature-
map (spatial FNet). 

Preprocessing menormalkan distribusi 
intensitas antara domain, sementara Spatial-

FNet memadukan informasi frekuensi pada 
level fitur untuk memperbaiki rekonstruksi 

struktur visual. 

Modifikasi 3 

Menempatkan MLP-Mixer di bottleneck 
dengan patching pada feature-map 

menggantikan attention. 

MLP-Mixer melakukan token-mixing lewat 
dense layer sehingga menggabungkan 

informasi spasial-token secara efektif dan 

mengoptimalkan pemulihan detail struktural 
dengan kompleksitas parameter yang 

terkontrol. 

Modifikasi 4 

MLP-Mixer terstruktur (configurable 

patch/size, default input 128×128) + 

loss gabungan (MAE + (1−SSIM) ± 
perceptual) dan augmentasi lanjutan. 

Bertujuan meningkatkan kualitas perseptual 

keluaran; membutuhkan penyetelan 

hyperparameter (ukuran input, bobot loss) 
agar konvergensi dan kinerja numerik 

optimal. 

Modifikasi 5 

Mengaplikasikan gMLP-style: pooling 
atau token-reduction sebelum token-

mixing lalu upsample kembali; 
ditambah CLAHE/histmatch. 

Pooling mengurangi panjang urutan token 
sehingga menekan biaya komputasi saat 

mixing, mempertahankan konteks global 
namun berpotensi kehilangan detail halus 

yang memerlukan tuning pool size. 

 
 
2.4.2 Modifikasi 1 — FNet (FFT-based) + Augmentasi Sintetis 
Modifikasi 1 menggantikan mekanisme bottleneck attention tradisional dengan FNet (token-
mixing berbasis FFT) untuk menangkap konteks global pada biaya komputasi rendah. Pada 
proses forward, encoder CNN mengekstrak fitur, lalu FNet melakukan pencampuran token di 
bottleneck untuk menyebarkan konteks global, dan decoder merekonstruksi citra bersih. 
Gambar 3 memperlihatkan arsitektur model Modifikasi 1. 

 
Gambar 3. Arsitektur Model pada Modifikasi 1 
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2.4.3 Modifikasi 2 — Spatial-FNet + Histogram-matching/CLAHE 
Modifikasi 2 menambahkan pra-pemrosesan berbasis histogram-matching dan CLAHE untuk 
menormalkan distribusi intensitas antardomain, serta menerapkan FNet pada peta fitur 
internal (spatial FNet). Dengan pendekatan ini, pencampuran di domain frekuensi tidak hanya 
terjadi pada token input awal, tetapi juga pada representasi fitur selama pemrosesan, sehingga 
model menggabungkan informasi frekuensi dan spasial pada tingkat fitur. Proses kerjanya 
dimulai dari citra input yang menjalani pra-pemrosesan (histogram-matching/CLAHE), 
kemudian melewati encoder; pada bottleneck, spatial-FNet melakukan pencampuran token 
pada peta fitur, lalu decoder merekonstruksi citra akhir. Kombinasi tersebut ditujukan 
meningkatkan rekonstruksi struktur visual yang sangat peka terhadap perbedaan sebaran 
intensitas. Gambar 4 menunjukkan arsitektur Modifikasi 2. 

 
Gambar 4. Arsitektur Model pada Modifikasi 2 

 
2.4.4 Modifikasi 3 — MLP-Mixer di Bottleneck 
Pada Modifikasi 3, mekanisme attention di bottleneck digantikan oleh MLP-Mixer yang bekerja 
dengan membagi feature-map menjadi patches. Setiap patch diproses melalui lapisan-lapisan 
fully-connected (dense) sehingga terjadi pertukaran konteks antar-token secara efektif tanpa 
mengandalkan perhatian tradisional. Proses kerja mencakup pemisahan peta fitur menjadi 
sejumlah patch, pemrosesan antar-token melalui lapisan MLP untuk pertukaran konteks, dan 
kemudian penggabungan kembali patch sebelum diteruskan ke decoder. Pendekatan ini 
bertujuan untuk memulihkan detail struktural citra sambil menjaga kompleksitas parameter 
tetap terkontrol. Gambar 5 mengilustrasikan arsitektur Modifikasi 3. 

 
Gambar 5. Arsitektur Model pada Modifikasi 3 

 
2.4.5 Modifikasi 4 — MLP-Mixer Terstruktur + Loss Gabungan 
Modifikasi 4 mengembangkan Modifikasi 3 dengan MLP-Mixer yang lebih terstruktur (ukuran 
patch dapat dikonfigurasi; input default 128×128) serta penerapan fungsi loss gabungan. 
Strategi ini bertujuan meningkatkan kualitas perseptual keluaran agar hasil rekonstruksi tidak 
hanya minim kesalahan numerik tetapi juga tampil lebih tajam dan alami secara visual. Gambar 
6 memperlihatkan arsitektur Modifikasi 4.  
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Gambar 6. Arsitektur Model pada Modifikasi 4 

 
2.4.6 Modifikasi 5 — gMLP-style dengan Token-reduction + CLAHE/Histmatch 
Modifikasi 5 mengadopsi gaya gMLP dengan mekanisme pooling/token-reduction sebelum 
tahap token-mixing, dilanjutkan upsampling sebelum decoding. Dengan mengurangi panjang 
urutan token, pendekatan ini menekan biaya komputasi pada tahap pencampuran, tetap 
mempertahankan konteks global sekaligus berisiko menghilangkan beberapa detail halus yang 
memerlukan penyetelan ukuran pooling yang tepat. Gambar 7 menampilkan arsitektur 
Modifikasi 5. 

 
Gambar 7. Arsitektur Model pada Modifikasi 5 

 
2.5 Prosedur Pelatihan, Validasi, dan Pengujian 
Pelatihan setiap varian model mengikuti prosedur yang sama: data pelatihan (160 citra) 
diberikan augmentasi dan pra-pemrosesan sesuai desain eksperimen, lalu model dilatih untuk 
meminimalkan fungsi loss tertentu. Kinerja model dipantau pada set validasi (40 citra) untuk 
memilih checkpoint terbaik dan menentukan early stopping. Setelah model terbaik terpilih 
berdasarkan metrik pada data validasi, evaluasi akhir dilakukan pada himpunan uji terpisah (9 
citra) untuk mengukur kemampuan generalisasi model pada kondisi yang belum pernah dilihat 
sebelumnya.  

3. HASIL DAN PEMBAHASAN 

Pada bagian hasil dan pembahasan disajikan evaluasi kinerja model dehazing secara kuantitatif 
dan kualitatif, dimulai dari perbandingan metrik PSNR dan SSIM pada baseline CNN serta lima 
varian modifikasi untuk menilai peningkatan kualitas rekonstruksi dan konsistensi hasil.  

Selanjutnya, analisis visual pada kondisi outdoor, indoor, dan citra nyata digunakan untuk 
meninjau pemulihan kontras, detail, dan kestabilan warna, sekaligus mengidentifikasi artefak 
seperti residu kabut, pergeseran tonal, dan potensi over-enhancement. 
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Gambar 8. Perbandingan Nilai PSNR untuk Setiap Gambar Uji 

 

Gambar 8 dan Gambar 9 memperlihatkan perbandingan PSNR dan SSIM untuk setiap gambar 
uji. Secara numerik, model baseline CNN mencapai PSNR rata-rata ≈18.42 dB dan SSIM rata-
rata ≈0.747, sedangkan semua modifikasi arsitektur memberikan peningkatan signifikan 
dengan PSNR rata-rata berkisar ≈22.98–23.95 dB dan SSIM rata-rata ≈0.894–0.911. 
 

 
Gambar 9. Perbandingan Nilai SSIM untuk Setiap Gambar Uji 

 
Data pada Tabel 2 menunjukkan bahwa hasil baseline mengalami variasi yang lebih besar dan 
beberapa sampel memiliki PSNR rendah, mencerminkan kegagalan relatif dalam memulihkan 
citra yang sangat terdegradasi. Secara keseluruhan, peningkatan angka tersebut menandakan 
perbaikan baik dalam kesamaan piksel murni (PSNR) maupun kesamaan struktural/perseptual 
(SSIM), yang lebih relevan untuk kualitas visual.  
 

Tabel 2. Hasil Pengujian Model CNN 
 

Model PSNR  (dB) SSIM 

CNN 

20,62 0,8027 

18,69 0,7587 

22,17 0,8332 

20,36 0,7835 

12,64 0,5626 

15,8 0,6533 

15,54 0,7507 

20,61 0,7851 

19,36 0,7898 
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Modifikasi 1 menunjukkan peningkatan substansial dibandingkan baseline: PSNR rata-rata 
≈23.74 dB dan SSIM rata-rata ≈0.901. Nilai pada Tabel 3 memperlihatkan PSNR sangat tinggi 
pada beberapa sampel dan SSIM mendekati atau melebihi 0.90 pada mayoritas sampel. 
Peningkatan ini sesuai dengan desain Modifikasi 1 yang menggantikan bottleneck attention 
dengan FNet (token-mixing berbasis FFT) dan menggunakan augmentasi sintetis, yang 
bersama-sama meningkatkan kemampuan model menangkap konteks global dan memperbaiki 
generalisasi pada dataset terbatas. Hasil pada Tabel 3 mendukung argumen bahwa 
pemrosesan di domain frekuensi (FNet) beserta augmentasi sintetis efektif meningkatkan 
rekonstruksi citra dehazing.  

Tabel 3. Hasil Pengujian Modifikasi 1 

 

Model PSNR  (dB) SSIM 

Modifikasi 1 

26,6941 0,9068 

22,3736 0,8881 

26,6358 0,9531 

23,2667 0,9213 

19,487 0,8338 

22,5615 0,8879 

22,0321 0,873968 

24,2468 0,9208 

26,3308 0,9199 

 

Modifikasi 2 mempertahankan kinerja tinggi dengan PSNR rata-rata ≈23.58 dB dan SSIM rata-
rata ≈0.908. Data pada Tabel 4 menunjukkan Modifikasi 2 cenderung menghasilkan nilai SSIM 
sangat baik, mengindikasikan rekonstruksi struktur visual yang sangat baik. Hal ini konsisten 
dengan strategi pra-pemrosesan (histogram-matching dan CLAHE) yang menormalkan 
distribusi intensitas sehingga spatial-FNet dapat bekerja lebih stabil pada level fitur dan 
mempertahankan struktur lokal.  

Table 4. Hasil Pengujian Modifikasi 2 

 

Model PSNR  (dB) SSIM 

Modifikasi 2 

26,1 0,9078 

25,85 0,9041 

22,85 0,9528 

22,6 0,9219 

20,15 0,8533 

22,33 0,8877 

22,03 0,8829 

25,26 0,9342 

25,05 0,93 

 
Modifikasi 3 memperlihatkan peningkatan terhadap baseline dengan rata-rata PSNR ≈ 22.98 
dB dan SSIM ≈ 0.894. Nilai-nilai pada Tabel 5 menunjukkan konsistensi performa pada 
sebagian besar sampel, menandakan bahwa MLP-Mixer mampu menggabungkan konteks 
spasial-token secara efektif dan memulihkan detail struktural tanpa kompleksitas attention 
penuh.  
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Table 5. Hasil Pengujian Modifikasi 3 

 

Model PSNR  (dB) SSIM 

Modifikasi 3 

22,53 0,8555 

22,07 0,8936 

24,99 0,9428 

22,59 0,9088 

19,64 0,8318 

23,18 0,8895 

22,56 0,8755 

24,19 0,9242 

25,09 0,924 

 

Modifikasi 4 menampilkan variasi hasil yang lebih besar; PSNR rata-rata ≈21.16 dB dan SSIM 
rata-rata ≈0.867, secara umum lebih rendah dibanding modifikasi lain kecuali baseline. Tabel 
6 menunjukkan beberapa sampel dengan PSNR dan SSIM tinggi serta beberapa sampel 
dengan penurunan performa, pola yang konsisten dengan sifat Modifikasi 4 yang 
memperkenalkan loss gabungan dan konfigurasi patch yang lebih sensitif. Artinya, Modifikasi 
4 dapat menghasilkan kualitas perseptual yang sangat baik jika bobot loss dan hyperparameter 
disetel dengan tepat, namun juga rentan terhadap ketidaktepatan penyetelan sehingga 
menimbulkan variasi performa antarsampel.  

Table 6. Hasil Pengujian Modifikasi 4` 
 

Model PSNR  (dB) SSIM 

Modifikasi 4 

23,08 0,8597 

21,16 0,8796 

25,21 0,9259 

23,12 0,9163 

15,29 0,7599 

18,77 0,8286 

17,33 0,8273 

23,26 0,9078 

23,25 0,8938 

 

Modifikasi 5 mencatat performa terbaik secara agregat: PSNR rata-rata ≈23.95 dB dan SSIM 
rata-rata ≈0.911. Tabel 7 menunjukkan beberapa nilai PSNR/SSIM tertinggi pada kumpulan 
sampel (misalnya PSNR ≈27.36 dB dengan SSIM ≈0.9255), menandakan kemampuan 
Modifikasi 5 menjaga konteks global melalui token-reduction sekaligus memulihkan detail 
struktural relevan. Hasil ini mengindikasikan bahwa strategi pooling/token-reduction yang hati-
hati dapat menekan biaya komputasi selama pencampuran token tanpa mengorbankan 
kualitas rekonstruksi jika ukuran pooling dioptimalkan; namun terdapat risiko kehilangan detail 
halus jika ukuran pooling tidak disesuaikan dengan tepat. Selain unggul secara metrik, 
keluaran Modifikasi 5 cenderung lebih stabil pada variasi tingkat kabut karena kombinasi 
token-reduction dan pra-pemrosesan adaptif membantu menyeimbangkan pemulihan kontras 
dengan konservasi struktur utama.  
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Table 7. Hasil Pengujian Modifikasi 5 

 

Model PSNR  (dB) SSIM 

Modifikasi 5 

27,36 0,9255 

22,54 0,8926 

26,76 0,9515 

23,13 0,9267 

19,19 0,8425 

22,87 0,8959 

22,27 0,8927 

25,86 0,9415 

25,56 0,9313 

 

Pada Gambar 10 disajikan perbandingan hasil dehazing pada kondisi outdoor dengan urutan 
kolom Hazy (citra input berkabut), CNN (prediksi model baseline), (1)–(5) (prediksi dari lima 
varian model hasil modifikasi), serta GT (citra bersih/ground truth). Secara kualitatif, citra Hazy 
menunjukkan penurunan kontras global dan hilangnya detail pada area berjarak (misalnya 
tekstur fasad bangunan, batas vegetasi, serta permukaan jalan/rel) akibat dominasi kabut 
yang meningkatkan veiling light. Hasil CNN telah mampu mengurangi kabut dan memulihkan 
sebagian struktur, namun masih tampak adanya residu kabut pada area tertentu serta 
ketidakstabilan reproduksi warna/kontras pada beberapa sampel (misalnya langit cenderung 
kurang natural atau bayangan menjadi lebih pekat).  

Dibandingkan baseline, keluaran model (1)–(5) umumnya memperlihatkan pemulihan 
visibilitas yang lebih baik melalui peningkatan kontras dan ketegasan tepi objek, sehingga 
detail visual tampak lebih mendekati GT.  

 

        

        

        
Hazy CNN (1) (2) (3) (4) (5) GT 

Gambar 10. Visualisasi Hasil Pengujian pada Kondisi Ourdoor 

 

Gambar 11 menampilkan hasil dehazing pada kondisi indoor dengan format kolom yang sama 
(Hazy, CNN, (1)–(5), dan GT). Pada skenario indoor, dehazing lebih menantang karena 
pencahayaan tidak merata, pantulan, serta kontras terang–gelap, sehingga citra Hazy tampak 
washed-out dan detail kecil mudah hilang. Prediksi CNN mampu mengurangi kabut, tetapi 
pada beberapa contoh masih muncul ketidakkonsistenan tonal seperti citra lebih gelap atau 
color cast sehingga kemiripannya terhadap GT belum stabil. Secara umum, modifikasi (1)–(5) 
meningkatkan keterbacaan struktur dan kontras lokal sehingga detail spasial lebih jelas dan 
hasil lebih mendekati GT, namun peningkatan kontras juga berpotensi memicu amplifikasi 
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noise pada area gelap, pergeseran warna, atau residu kabut tipis pada area backlight; karena 
itu diperlukan keseimbangan antara penguatan detail dan kestabilan warna agar rekonstruksi 
tetap realistis lintas adegan. 

        

        

        

        

        

        

Hazy CNN (1) (2) (3) (4) (5) GT 

Gambar 11. Visualisasi Hasil Pengujian pada Kondisi Indoor 

Gambar 12 menyajikan perbandingan hasil prediksi dehazing pada citra nyata, yang terdiri 
atas (a) citra hazy sebagai masukan, (b) keluaran model baseline CNN, dan (c) keluaran model 
Modifikasi 5 sebagai model dengan nilai agregat tertinggi. Berdasarkan Gambar 12, model 
baseline CNN (b) cenderung menghasilkan perubahan tonal dan pergeseran warna yang lebih 
kuat, ditunjukkan oleh tampilan yang lebih gelap serta munculnya bias warna 
kebiruan/keunguan, sehingga naturalitas citra menurun meskipun terjadi peningkatan kontras 
pada beberapa area. Sebaliknya, model Modifikasi 5 (c) memberikan hasil yang lebih stabil 
secara visual  

   

a) b) c) 

Gambar 12. Hasil Prediksi pada Citra Nyata; a) Hazy; b) Baseline CNN; c) Modifikasi 5 



Enhancing Hazy Image Quality with a Modular CNN Encoder–Decoder 

ELKOMIKA – 81 

4. KESIMPULAN 

Berdasarkan serangkaian eksperimen dan analisis yang dijelaskan mulai dari pendahuluan 
hingga hasil penelitian, dapat disimpulkan bahwa integrasi arsitektur CNN encoder–decoder 
dengan mekanisme token-mixing modern (FNet/FFT-based, MLP-Mixer, gMLP) serta strategi 
pra-pemrosesan adaptif (CLAHE dan histogram-matching) secara konsisten meningkatkan 
kualitas pemulihan citra berkabut dibandingkan baseline CNN konvensional; hal ini tercermin 
pada kenaikan metrik numerik dan perbaikan perseptual yang nyata, di mana baseline CNN 
memiliki kinerja rata-rata PSNR ≈ 18.42 dB dan SSIM ≈ 0.747, sedangkan variasi modifikasi 
menghasilkan rentang rata-rata PSNR ≈ 22.98–23.95 dB dan SSIM ≈ 0.894–0.911, dengan 
Modifikasi 1 (FNet + augmentasi) dan Modifikasi 5 (gMLP-style + CLAHE/histmatch) 
menempati posisi terbaik secara agregat, namun demikian hasil eksperimen juga menunjukkan 
bahwa meskipun beberapa varian berpotensi menghasilkan keluaran perseptual yang sangat 
baik, pendekatan tersebut rentan terhadap varians performa apabila hyperparameter dan 
bobot loss tidak disetel secara cermat, sehingga temuan ini menegaskan pentingnya 
penyetelan hyperparameter dan pemilihan bobot loss yang teliti untuk merealisasikan 
keuntungan teoretis metode-metode tersebut. 
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