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ABSTRAK 

Penelitian ini mengusulkan penerapan Optimal Power Flow (OPF) pada Sistem 
Kelistrikan Lombok yang terdiri atas 19 bus dan 7 unit pembangkit, dengan 
tujuan utama mengurangi biaya produksi pada kondisi beban puncak. Metode 
yang digunakan merupakan metode optimasi hibrida yang mengombinasikan dua 
metode yaitu algoritma Particle Swarm Optimization dan Simulated Annealing. 
Metode Particel Swarm Optimization and Simulated Annealing (PSO–SA). 
Menggabungkan algoritma PSO dan SA dapat perbaiki kelemahan PSO dengan 
fitur lompatannya. Dengan kata lain, penggunaan Algoritma PSO-SA lebih efektif 
dibandingkan metode PSO. Hasil simulasi menunjukkan biaya pembangkitan 
sebesar USD 31.158. Total daya terbangkit 193,736 MW, yang setara dengan 
jumlah beban 193,34 MW. Selain itu, profil tegangan seluruh bus berada pada 
0,95–1,05 pu dan aliran daya seluruh saluran berada di bawah kapasitas termal. 
Temuan ini menegaskan bahwa penggunaan Algoritma PSO–SA efektif menekan 
biaya operasi tanpa melanggar batasan operasi sistem.  

Kata kunci: Aliran Daya, OPF, PSO-SA, Sistem Kelistrikan Lombok 

ABSTRACT 

This study proposes the application of Optimal Power Flow (OPF) in the Lombok 
Electricity System consisting of 19 buses and 7 generating units, with the main 
objective of reducing production costs under peak load conditions. The method 
used is a hybrid optimization method that combines two methods, namely the 
Particle Swarm Optimization and Simulated Annealing algorithms. Particle Swarm 
Optimization and Simulated Annealing (PSO–SA) method. Combining PSO and SA 
algorithms can improve the weaknesses of PSO with its jumping feature. In other 
words, the use of the PSO-SA algorithm is more effective than the PSO method. 
The simulation results show a generation cost of USD 31,158. The total 
generated power is 193,736 MW, which is equivalent to a total load of 193.34 
MW. In addition, the voltage profile of all buses is at 0.95–1.05 pu and the power 
flow of all lines is below the thermal capacity. This finding confirms that the use 
of the PSO–SA algorithm effectively reduces operating costs without violating the 
system's operating constraints. 

Keywords: Lombok Power System, OPF, Power Flow, PSO-SA 
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1. INTRODUCTION 

Electricity has become an essential requirement for modern life, playing a crucial role in both 
household consumption and industrial development (Gopinath & Meher, 2018). The rapid 
growth of demand for electrical energy necessitates the expansion of generation capacity to 
ensure reliable supply (Barman et al., 2023). At the same time, the integration of 
renewable resources and economic efficiency in power generation is increasingly important 
for supporting sustainable industrialization and improving quality of life (Algarni et al., 
2023). With ongoing technological advancements and industrial growth, the rising electricity 
demand highlights the urgency of optimizing generation strategies to maintain cost-
effectiveness while meeting load requirements (Silva et al., 2020). Within this context, 
reducing operating costs remains a primary objective in the efficient management of 
electrical power systems (Mubarak et al., 2022). 

Optimal Power Flow (OPF) is widely regarded as a fundamental optimization challenge in the 
operation and planning of electrical networks (Li et al., 2024). The central aim of OPF is to 
minimize generation expenses through the optimal scheduling of active power outputs across 
multiple generating units (Yang et al., 2023). However, this optimization must be achieved 
while complying with equality and inequality constraints as well as technical requirements, 
including bus voltage stability and thermal capacity limits of transmission lines (Biswas et 
al., 2020). Broadly, OPF solution strategies are divided into deterministic approaches, which 
rely on mathematical formulations, and non-deterministic or heuristic techniques that employ 
probabilistic algorithms (Ebeed et al., 2018). 

This study focuses on the Lombok interconnected electricity system, which relies on seven 
fossil fuel-fired power plants: Ampenan Diesel Power Plant, Taman Diesel Power Plant, 
Sewatama Jeranjang, Jeranjang Steam Power Plant, Paok Motong Diesel Power Plant, 
Cogindo Pringgabaya, and Sambelia Steam Power Plant. This study investigates power 
generation optimization across distributed diesel and turbine units with the dual objectives of 
reducing system operating costs and minimizing power losses. By applying optimization 
methods, this study aims to produce a generator loading scheme that ensures efficiency 
while maintaining system reliability. 

The OPF problem is addressed under peak load conditions using two metaheuristic 
optimization algorithms, namely Particle Swarm Optimization (PSO) and Simulated Annealing 
(SA). Both algorithms are used because the PSO algorithm has several weaknesses, such as 
premature convergence to the local optimum. One of the reasons is that all particles have a 
tendency to fly to the current best solution which is the local optimum or a solution close to 
the local optimum, so that all particles will be concentrated in a small particle region and the 
global exploration capability will be weakened. The character of the SA algorithm is a 
probabilistic algorithm, namely a worse solution has a probability of being accepted as a new 
solution, therefore, by combining the PSO and SA algorithms, the weaknesses of PSO can be 
improved with its jump feature. In other words, the PSO algorithm is often stuck in local 
optima and cannot converge to the global optimum. This weakness is considered the 
weakest point in the PSO algorithm. 

The PSO-SA algorithm is used to determine the optimal generation output for each unit, and 
the results are compared with actual operational data from PT PLN's NTB Regional Main Unit. 
This comparative analysis aims to assess the effectiveness of heuristic optimization in real-
world system operation and to identify potential cost-saving strategies for the Lombok 
network. 
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Previous research has demonstrated the potential of PSO in solving multi-objective OPF 
problems, such as a 2019 study on wind-integrated power systems that incorporated 
demand response programs (Ma et al., 2019). That work proposed an economic 
scheduling model aimed at minimizing both generation costs and carbon emissions. More 
recently, in 2022, a study developed a dynamic OPF framework based on scheduling to 
optimize grid-scale Battery Energy Storage Systems (BESS), targeting improved renewable 
energy utilization and reduction of network demand fluctuations (Fan et al., 2022). These 
contributions highlight the evolving application of OPF methodologies in addressing the 
challenges of modern power systems, forming the basis for the hybrid PSO-SA approach 
explored in this study. 

2. METHODOLOGY 

In this study, Optimal Power Flow (OPF) calculations were tested using a hybrid Particle 
Swarm Optimization–Simulated Annealing (PSO-SA) algorithm, with the Lombok power 
system as the research object. The power system includes seven fossil fuel-based power 
plants, namely Jeranjang Coal Power Plant, Sambelia Coal Power Plant, Ampenan Diesel 
Power Plant, Taman Diesel Power Plant, Sewatama Jeranjanjang, Cogindo Pringgabaya, and 
Paok Motong Diesel Power Plant. The total installed capacity of all power plants reaches 
319.86 MW, with a peak system load of 193.34 MW. Based on their characteristics, the 
seven power plants can be categorized into two main types, namely diesel power plants and 
turbine power plants. 

2.1 Lombok Radial Electrical System 
The Lombok electricity system, which is the subject of this study, is a radial configuration 
system consisting of seven power plants and 19 buses. To simplify the computation and 
analysis process, a line diagram was drawn and then further simplified. The results of the 
diagram simplification are presented in Figure 1.  

 

Figure 1. One Line Diagram of The Lombok Electrical System 
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Each generator in the system has its own technical specifications. Those specifications are 
summarized in Table 1. This data was obtained from the processed operational data of PT 
PLN (Persero) UP3B Mataram. Table 1 describes the generator units connected to each bus 
along with the total generation capacity at that bus.  

This generation data will then be used to calculate the cost coefficient and perform an 
Optimal Power Flow (OPF) simulation. It should be noted that the generation value at the 
slack bus (defined as bus 1) has not been determined at this stage, as it will be a variable 
resulting from the power flow calculation process. 

Table 1. Lombok System Generator Data 

BUS GENERATOR POWER (MW) CAPACITY (MW) 

1 AMP Diesel Power Plant 55.76 79.66 

5 SWTM Diesel Power Plant 18.83 22 

6 SWTM Diesel Power Plant 3 1.96 8.8 

7 JRJ Coal-Fired Power Plant 36.89 90 

15 PKM Diesel Power Plant 15.51 23.4 

16 PLTD COG 33.43 41 

19 SBL Coal-Fired Power Plant 50 60 

Total  199.34 319.86 

In addition to generator and load specifications, transmission line characteristics are also 
critical parameters. The specifications of the 150 kV Lombok system transmission lines are 
presented in Table 2. The line impedance (Z) for modeling is obtained from the positive 
sequence impedance (Z1) value, which is identical. However, the Z1 value in Table 2 is the 
value per kilometer. Therefore, to obtain the impedance of each line individually, the Z1 
value must be multiplied by the length of each line. The results of the impedance value 
calculations for each line in the Lombok power system (Figure 1) are then summarized in 
Table 3. The line length data used in these calculations is sourced from PT PLN (Persero) 
UP3B Mataram. 

Table 2. Transmission Line Specifications for the Lombok Electrical System 

Conductor Type ACSR Hawk 

Cross-sectional Area 240 mm² 

Z1& Z2 (0.137+j0.4095) Ω/km 

Z0 (0.33933+j0.94228) Ω/km 

Table 3. Data for each line in the Lombok Electrical System 

Line 
Number 

Bus 
Line Impedance  

(Ω/km) 
Line Length 

 (km) 

Line Parameters (pu)* 

From To 
R X 

4 4 7 0.137+j0.4095 7.11 0.0043292 0.0129402 

7 7 8 0.137+j0.4095 36.19 0.022035689 0.0658658 

8 7 10 0.137+j0.4095 38.45 0.023411778 0.069979 

10 8 10 0.137+j0.4095 31.19 0.018991244 0.0567658 

12 10 12 0.137+j0.4095 12.00 0.007306667 0.02184 

13 10 14 0.137+j0.4095 38.99 0.023740578 0.0709618 

16 14 16 0.137+j0.4095 17.66 0.010752978 0.0321412 

18 16 18 0.137+j0.4095 17.28 0.0105216 0.0314496 

19 18 19 0.137+j0.4095 1.44 0.000876034 0.00261850 
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2.2 Economic Dispatch Formulation 
Economic dispatch is a fundamental optimization approach in power system operation that 
determines the most economical allocation of generation among available units to satisfy the 
system load at the lowest possible cost. The primary objective is to identify the output of 
each generating unit in such a way that the total production cost is minimized while 
maintaining reliable operation. Since each generator is characterized by specific operational 
features influenced by factors such as fuel type, conversion efficiency, and design, the 
overall cost function varies across units. These unique characteristics lead to diverse cost 
functions that must be accounted for in the optimization process, thereby ensuring an 
accurate and efficient dispatch strategy (Marzbani & Abdelfatah, 2024). 

 
Figure 2. System With N Generating Units Without Transmission Losses 

To illustrate this concept, Figure 2 depicts a simplified thermal power generation system 
composed of N generating units connected to a common bus bar. The bus supplies the total 
system demand, denoted as 𝑃𝑅𝑏𝑒𝑏𝑎𝑛, which must be met collectively by all generating units. 

For each unit i, the input is represented by 𝐹i, describing the fuel cost function, while the 

corresponding output, 𝑃i, denotes the electrical power produced. The overall operating cost 

of the system, expressed as 𝐹𝑇, is the cumulative sum of the costs associated with each 
generating unit. This structure highlights the interdependence between individual unit 
performance and the aggregate economic outcome of the entire system. 

A critical operational constraint in economic dispatch requires that the sum of the power 
outputs from all generating units must equal the total system demand. In the simplest case, 
where transmission losses are neglected and unit-specific operating constraints are not 
explicitly considered, the problem formulation becomes a straightforward optimization model. 
The objective is to minimize the total generation cost function, 𝐹𝑇, while ensuring compliance 
with the equality constraint that enforces power balance. This mathematical representation, 
as presented in Equation (1), forms the basis of the economic dispatch model, serving as a 
foundational element in modern power system optimization and planning. 

FT = F1+ F2+ F3+….+ Fn                                           (1) 

2.3 Optimal Power Flow (OPF) 
The OPF formulation expands the scope of classical load flow analysis by embedding 
optimization objectives, typically aimed at minimizing generation cost while respecting 
system constraints. This formulation is not only limited to fulfilling power balance constraints, 
but also aims to optimize parameters such as total power plant operating costs (Ali et al., 
2024). The goal is to obtain an economical power generation configuration while still 
considering network losses (Sultan et al., 2025). Essentially, OPF represents a nonlinear 
optimization problem in which the power output of each generator must be determined 
within its operating limits to meet demand at the lowest possible production cost, while 
adhering to technical requirements such as generation capacity limits, bus voltage ranges, 
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and transmission line thermal limits (Saadat, 1999). In this context, OPF can be 
understood as a comprehensive integration of economic dispatch and power flow analysis, 
with the generator cost function for unit i generally expressed in quadratic form, as 
formulated in Equation (2). 

Min (𝐹𝑖) = ∑ 𝑎𝑖
𝑁𝑔
𝑖=1 𝑃𝑔𝑖

2+ bi𝑃𝑔𝑖+ 𝑐𝑖 $/hour                           (2) 

2.4 Constraints 
The calculation of optimal power flow has constraints that must be met. These constraints 
include the following (Gopinath & Meher, 2018). 

a. Equality Constraint 

∑ 𝑃𝑔𝑖
𝑁𝑔
𝑖=1  = Pg + PL                                           (3) 

In the Optimal Power Flow (OPF) formulation, system operational constraints are 
classified into two main types. First are the equality constraints, which ensure 
compliance with the principle of power balance (conservation) by requiring that the 
total generated power equals the sum of the total load and all system transmission 
losses. The equality constraints are shown in Equation (3). 

b. Inequality Constraint 

Pi min ≤  Pg
i 
 ≤ Pi max                                            (4) 

Qi min ≤  Qg
i 
 ≤ Qi max                                            (5) 

Inequality constraints limit the output power of each generating unit to remain within 
the permissible/feasible operating range, i.e., not exceeding the maximum limit and 
not falling below the minimum limit of its generation capacity. The mathematical 
model of these constraints is shown in Equations (4) and (5). 

2.4 Particle Swarm Optimization (PSO) 
To address highly complex and nonlinear optimization problems such as Optimal Power Flow 
(OPF), one of the most commonly applied approaches is Particle Swarm Optimization (PSO). 
Originally proposed by Kennedy and Eberhart in 1995, PSO is an evolutionary computation 
technique rooted in swarm intelligence, inspired by the collective foraging behavior of bird 
flocks (Freitas et al., 2020; Gad, 2022). In this algorithm, every potential solution is 
represented by a particle that navigates through the multidimensional search space. The 
trajectory of each particle is influenced by two essential learning components: the best 
position reached by the particle itself, referred to as Pbest (particle best), and the best 
position identified by the entire population, referred to as Gbest (global best) (Santosa & 
Willy, 2011). Through repeated interactions and iterative updates, the swarm gradually 
converges towards an optimal or near-optimal solution, as conceptually depicted in Figure 3. 
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Figure 3. Concept of Pbest and Gbest Search in PSO 

The dynamic search process in PSO relies on updating the velocity and position of particles. 
Each particle is modeled as an intelligent agent that adjusts its path by integrating two 
sources of information: its own cognitive memory (Pbest), which reflects individual learning, 
and the social influence derived from the experiences of other particles in the swarm 
(Gbest). This balance between self-exploration and social cooperation enhances the swarm’s 
ability to escape local optima and efficiently navigate toward the global optimum. The 
movement update equations shown in Equations (6) and (7), which form the mathematical 
foundation of PSO, govern how particles iteratively refine their positions within the solution 
space by combining these cognitive and social factors. 

𝑣𝑖
𝑡+1= 𝑤𝑣𝑖

𝑡+ 𝑐1𝑟1
𝑡(𝑃𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑥𝑖
𝑡)+𝑐2𝑟2

𝑡(𝐺𝑏𝑒𝑠𝑡𝑡 − 𝑥𝑖
𝑡)                   (6) 

𝑥𝑖
𝑡+1= 𝑥𝑖

𝑡+ 𝑣𝑖
𝑡+1                                            (7) 

Within the context of this study, PSO is specifically applied to optimize generation dispatch 
with the dual objectives of minimizing fuel costs and reducing transmission losses while 
rigorously adhering to OPF constraints. Each particle corresponds to a potential solution 
consisting of generator outputs subject to operational limits. Parameters such as maximum 
iterations define the number of computational cycles executed, whereas cognitive and social 
constants regulate the balance between exploration and exploitation. By integrating these 
mechanisms, the PSO framework provides a powerful and flexible optimization tool capable 
of delivering reliable, cost-effective, and technically feasible solutions for modern power 
system operation.  

2.5 Simulated Annealing (SA) 
Simulated Annealing (SA) is a metaheuristic optimization technique inspired by the physical 
annealing process in metallurgy, where a material is subjected to controlled heating and 
gradual cooling to enhance its crystalline structure and mechanical stability (Suman & 
Kumar, 2006). The fundamental strength of SA lies in its ability to escape local optima by 
probabilistically accepting inferior solutions, thereby promoting a more extensive exploration 
of the search space (Alkhamis & Hosny, 2023). At higher temperatures, the algorithm 
explores broadly, mimicking the free movement of high-energy atoms. As the temperature 
decreases in accordance with the cooling schedule, the search becomes more exploitative, 
allowing the algorithm to refine candidate solutions and converge towards the global 
optimum, which represents the lowest energy—or best objective function—state.  

The general procedure of the SA algorithm begins with the initialization phase, where 
parameters such as the initial temperature (T) and final temperature (Tθ) are determined, 
followed by the random generation of an initial solution (Ci) and the evaluation of its 
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objective function f(Ci). The iterative process then commences, in which new candidate 
solutions (Ci′) are generated through slight modifications of the current solution. Each 
candidate is evaluated, and acceptance is determined based on criteria that allow not only 
superior solutions but also inferior ones with a probability P=exp(−Δf/T), where Δf 
represents the change in objective function. This probabilistic acceptance mechanism is 
governed by a random number r∈[0,1], ensuring controlled stochasticity in the search 

process. After each iteration, the temperature is reduced following a predetermined cooling 
schedule. The algorithm terminates when the current temperature falls to or below Tθ, at 
which point the optimal or near-optimal solution is obtained. 

2.4 Hybrid PSO-SA Algorithm 
Although effective, the PSO algorithm has an inherent weakness in that it tends to converge 
prematurely to a local optimum (Nikolaev & Jacobson, 2010). This occurs because all 
particles tend to gather in the best solution region found at that time, which may not be the 
global solution, thereby weakening the algorithm's exploration capabilities. 

In contrast, the probabilistic nature of the SA algorithm allows it to accept temporarily worse 
solutions, giving it a strong ability to escape local optima. Therefore, this study proposes the 
integration of both algorithms in a hybrid framework called PSO-SA. At each iteration, the 
best solution produced by PSO is used as the initial solution for the SA process. Annealing 
simulation then helps expand the search and increase the probability of finding a global 
solution, thereby overcoming the main weakness of PSO. The implementation of this hybrid 
scheme is shown in Figure 4. 

 

Figure 4. PSO-SA Flowchart 
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3. RESULTS AND DISCUSSION 

3.1 OPF Simulation Using PSO-SA 
The network configuration comprises twelve load buses distributed across both sides of the 
transformer at voltage levels of 20 kV and 150 kV, thereby representing the hierarchical 
structure of the system. Additionally, the system is supported by six generator buses and 
one slack bus, ensuring a balanced and stable operation during optimization. The initial 
setup, including detailed parameters of all buses under peak load conditions, is 
comprehensively presented in Table 4, serving as the foundation for the subsequent 
optimization process. 

Table 4. Bus Settings and Electrical Load in Lombok during Peak Load 

  Bus 
Number 

  Bus Type PG (MW) QG (MVAr) PD (MW) QD (MVAr) 

1 Slack Bus - - 57.15 9.548 

2 Load Bus 0 - 28.70 3,847 

3 Load Bus 0 0 0 0 

4 Generator Bus 21.49 - 0 0 

5 Generator Bus 1.96 - 16.01 2,173 

6 Generator Bus 36.89 0 0 0 

7 Load Bus 0 0 0 0 

8 Load Bus 0 0 19.57 2,104 

9 Load Bus 0 0 0 0 

10 Load Bus 0 0 16.12 2,493 

11 Load Bus 0 0 0 0 

12 Load Bus 0 0 19.12 0.728 

13 Load Bus 0 0 0 0 

14 Generator Bus 16.60 - 26.75 2,841 

15 Generator Bus 33.43 - 0 0 

16 Load Bus 0 - 9.92 0.621 

17 Load Bus 0 0 0 0 

18 Generator Bus 50.08 - 0 0 

During the testing phase, the Optimal Power Flow (OPF) was solved using the hybrid PSO-SA 
approach. Prior to executing the simulation, the minimum (Pmin) and maximum (Pmax) 
generation capacities of all generators were determined, as documented in Table 5, to define 
the operating boundaries of each generating unit. Furthermore, the cost coefficients of each 
generator, which form the basis of the objective function for minimizing generation costs, 
were carefully evaluated and are reported in Table 6. These preparatory steps ensured that 
the optimization process accurately represented the technical and economic constraints of 
the system, thereby enabling the PSO-SA method to effectively identify the most economical 
and reliable generation dispatch solution under peak operating conditions. 

Table 5. Generator Capacity 
Generator Pmin (MW) Pmax (MW) 

Generator 1 5 79.66 

Generator 2 5 22 

Generator 3 1.5 8.8 

Generator 4 5 90 

Generator 5 5 23.4 

Generator 6 5 35.2 

Generator 7 5 60 
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Table 6. Generator Cost Function 
Generator a b c 

Generator 1 1.54818 160.1961 1172 

Generator 2 0.09776 278.1519 25 

Generator 3 2.58888 339.2166 2.5 

Generator 4 0.00762 50.36437 1 

Generator 5 1.76106 250.8115 87.2 

Generator 6 0.35572 122.3283 85.1 

Generator 7 0.19717 599.9980 1999 

 
3.2 Generation Cost Analysis 
The Optimal Power Flow (OPF) analysis conducted in this study emphasizes the dual 
objectives of minimizing both generation costs and power losses. The performance of the 
optimization is comprehensively summarized through critical variables, including total 
generation cost, transmission losses, individual generator outputs, and total generated 
power, which are systematically presented in Table 7. These parameters serve as a 
benchmark for assessing the effectiveness of the applied optimization approach in improving 
the efficiency and reliability of system operation. 

The results reveal that the total power generation reached 193.736 MW, a value that 
corresponds precisely to the sum of overall load demand and the anticipated transmission 
losses. This outcome validates that the equality constraint, which requires strict adherence to 
the balance between generation and demand, has been fully satisfied. Additionally, all 
generator units were observed to operate within their permissible power output limits, 
bounded by minimum (Pmin) and maximum (Pmax) thresholds. Notably, several units—
specifically Generating Unit 3, Generating Unit 4, and Generating Unit 6—were identified to 
operate precisely at their respective boundaries, either at maximum or minimum capacity. 
The distribution profile of active power output across all generating units is illustrated in 
Figure 5, providing further insights into system behavior under optimized conditions. 

In parallel, the convergence performance of the hybrid PSO-SA algorithm is demonstrated in 
Figure 6. The curve indicates that convergence was successfully achieved at the 140th 
iteration, well before the completion of the total 200 iterations executed during the 
optimization process. This early convergence highlights the efficiency and robustness of the 
algorithm in obtaining the optimal solution to the OPF problem, ensuring both computational 
effectiveness and practical applicability for real-world power system optimization. 

Table 7. OPF Simulation Results Using the PSO-SA Method 

Generator Power       (MW) Load (MW) Losses (MW) Cost 

Generator 1 39.09 

193.34 0.396 $ 31158 

Generator 2 14.15 

Generator 3 1.5 

Generator 4 90 

Generator 5 8.7 

Generator 6 35.2 

Generator 7 5.00 

Total 193.736 
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Figure 5. Power Generation Curve 

 

Figure 6. PSO-SA Convergence Characteristic 

3.3 Voltage Profile of Buses 
The results of the voltage profile simulation for each bus are depicted in Figure 7. The 
graphical representation shows that the voltage magnitudes across the network are 
consistently within the permissible operating range of 0.95 to 1.05 per unit (pu). In 
particular, some buses, such as buses 1, 15, 18, and 19, show voltage levels close to the 
upper threshold of the set operational margin, highlighting their proximity to the maximum 
permissible limit. The overall analysis verifies that all buses comply with the established 
voltage regulation criteria, thus confirming the adequacy of system voltage stability under 
the given operating scenario. 

 

Figure 7. Bus Voltage Curve 
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3.4 Power Flow in Transmission Lines 
The results of the power flow simulation on each transmission line are shown in Table 8 and 
Figure 8. The analysis shows that the power flow on lines 1 to 19 is still below the line 
capacity of 30 MVA to 180 MW. 

The simulation results show that the power flow on channel 1 has the lowest power flow 
value, which is 0.31 MW, while channel 4 recorded the highest power flow value of 46.71 
MW. A visualization comparing the power flow and thermal capacity of each channel is 
presented in Figure 8. These results confirm that the power flow on all channels is below its 
maximum capacity limit, indicating that the channel capacity constraint has been met. 

 
Figure 8. Flow Value Curve in Each Branch 

Table 8. Power Flow in Each Branch 

 
Branch 

Bus From To 

From To P (MW) Q (MVAR) P (MW) Q (MVAR) 

1 1 4 -0.31 3.75 0.31 -3.74 

2 2 4 -17.70 -2.86 17.70 3.05 

3 3 4 -28.70 -3.87 28.70 4.83 

4 4 7 -46.71 -4.13 46.71 4.26 

5 5 7 13.98 -4.83 -13.98 5.08 

6 6 7 -14.51 -6.30 14.51 6.58 

7 7 8 29.48 -0.02 -29.48 0.07 

8 7 10 13.24 5.39 -13.24 -5.26 

9 8 9 19.57 2.55 -19.57 -2.10 

10 8 10 9.73 -2.62 -9.73 2.67 

11 10 11 16.12 2.80 -16.12 -2.49 

12 10 12 19.14 1.87 -19.14 -1.13 

13 10 14 -12.35 -2.08 12.35 2.19 

14 12 13 19.12 1.13 -19.12 -0.73 

15 14 15 17.80 -2.74 -17.80 3.09 

16 14 16 -30.19 0.56 30.19 -0.29 

17 16 17 9.92 0.73 -9.92 -0.62 

18 16 18 -5.00 0.83 5.00 -0.83 

19 18 19 -5.00 0.83 5.00 -0.83 
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3.5 Comparison of Actual Costs with the PSO-SA Algorithm 

Table 9. Comparison of Generation Costs 

Method Cost (USD) Cost (Rp) 

Actual 31,754 476,310,000 

PSO-SA 31,158 467,370,000 

 
As the final part of the comparative analysis, Table 10 presents a comparison of generation 
costs between actual conditions and optimization results using the PSO-SA algorithm. Based 
on Table 9, the simulation with the PSO-SA algorithm produces the lowest generation cost, 
which is $31,158. This value is lower than the generation cost under actual conditions, which 
was recorded at $31,754. Thus, it can be concluded that the implementation of the PSO-SA 
hybrid algorithm successfully optimizes the Optimal Power Flow (OPF), as evidenced by a 
significant reduction in electricity generation operating costs compared to the existing system 
operation. 

4. CONCLUSION 

The conducted simulations convincingly demonstrate that the hybrid Particle Swarm 
Optimization–Simulated Annealing (PSO-SA) technique is a robust and efficient tool for 
addressing the Optimal Power Flow (OPF) problem in the Lombok power network. All 
operational requirements of the system are successfully fulfilled, with the equality constraint 
achieved through a precise balance between the total generation output of 193.736 MW and 
the overall demand plus system losses. Likewise, the inequality conditions are fully satisfied, 
as reflected in the well-regulated bus voltage profile consistently maintained within the 
acceptable margin of 0.95–1.05 pu, alongside the absence of any transmission line 
overloading, thus ensuring secure system operation under the proposed optimization 
framework. From an economic and technical perspective, the PSO-SA algorithm 
demonstrates clear superiority by yielding the minimum generation cost of $31,158, which 
represents a substantial reduction compared with the actual operating expenditure of 
$31,754 under existing conditions. Moreover, the algorithm successfully minimizes real 
power losses to only 0.396 MW, further contributing to operational efficiency. These 
comprehensive results underline the effectiveness of the proposed hybrid approach in not 
only reducing generation costs but also reinforcing system reliability, efficiency, and stability.  
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