
Industrial Sciencetech Jurnal Volume 1 | Number 1

ISSN [e], 2579-4264 | DOI, https,//doi.org/10.26760/jrh Oktober 2024

 IDTECH – 33

Data Storage Database PostgreSQL and JSON File

Format in Golang Using Gin-Gonic and Gin-Gonic with

GORM

Dewi Rosmala1, Irsan Rasyidin2
1 Institut Teknologi Nasional Bandung , Bandung, Indonesia

Email, d_rosmala@itenas.ac.id1, nasrirasyidin@gmail.com2

Received 18 Juli 2024 | Revised 7 september 2024 | Accepted 24 Oktober 2024

ABSTRACT

Proficient data management and storage are imperative. Among the various programming languages and

frameworks available, Golang Gin-Gonic and Golang Gin-Gonic with GORM are widely favored by

developers for their speed and concurrent processing efficiency. Golang Gin-Gonic is especially valued

for creating high-performance applications, while GORM extends Golang’s capabilities with a powerful

GORM for database operations. Prior studies have emphasized Golang's effectiveness in data exchange

and its superior response speed and resource efficiency compared to Java and Python. This study aims to

analyze the performance of Golang Gin-Gonic and Golang Gin-Gonic with GORM concerning data

storage, focusing on PostgreSQL databases and JSON file formats. PostgreSQL was selected for its

robustness as an open-source RDBMS, while JSON was chosen for its lightweight and readable format.

The research assesses the execution speed and concurrency performance of both frameworks during data

storage tasks involving PostgreSQL and JSON. The study investigates the performance of Gin-Gonic and

Gin-Gonic with GORM in handling concurrent data storage operations in PostgreSQL and JSON

formats. Performance tests measured the duration and anomalies in data storage across three dummy

data sizes, 1000, 2000, and 3000. The results indicated that, for basic Golang Gin-Gonic, JSON

processing was generally faster than PostgreSQL, with a growing performance gap as data size

increased. Specifically, JSON processing was 53.63% quicker for 1000 dummy data, 24.14% quicker for

2000 dummy data, and 43.76% quicker for 3000 dummy data. Conversely, Golang Gin-Gonic with

GORM showed superior performance with PostgreSQL, being 21% faster for 1000 dummy data, 20.54%

faster for 2000 dummy data, and 33.2% faster for 3000 dummy data compared to JSON processing.

These findings imply that while JSON is more suitable for simpler configurations with basic Golang Gin-

Gonic, PostgreSQL integrated with GORM offers enhanced performance for handling larger and more

intricate data sets. This research provides valuable guidance for software developers in choosing the

appropriate framework based on their specific requirements, considering factors such as speed,

concurrency, and data storage type.

Keywords, Golang, Gin-Gonic, GORM, Data Storage, Performance analysis

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1491223610&1&&
https://doi.org/10.26760/jrh.v3i3.3428
mailto:d_rosmala@itenas.ac.id
mailto:nasrirasyidin@gmail.com2

Dewi Rosmala & Irsan Rasyidin

 IDTECH – 34

1. INTRODUCTION

Data management and storage have become crucial aspects. Various programming languages and

frameworks are used to handle these tasks, with Golang Gin-Gonic and Golang Gin-Gonic with

GORM being popular choices among developers. Golang Gin-Gonic is known for its high execution

speed and efficiency in concurrent performance, making it a primary choice for developing high-

performance applications [9]. The GORM library further enhances Golang's capabilities by providing

a robust Object-Relational Mapping (ORM) for database interactions, simplifying database operations

and increasing maintainability [9].

Previous research has discussed comparisons of programming languages and frameworks. For

instance, Wiji and Wiwin [8] demonstrated the successful implementation of Golang-based web

services in addressing data synchronization issues at PT Sumber Alfaria Trijaya, Tbk. This research

emphasized Golang's efficiency in data exchange with the JSON format [8]. Additionally, Dymora and

Paszkiewicz [3] compared the performance of Golang with Java and Python, highlighting Golang's

advantages in terms of response speed and resource efficiency. Their study showed that Golang

outperformed Java and Python in terms of execution time and memory usage, which is critical in

environments requiring fast and scalable solutions [3].

Andersson and Brenden [1] conducted a comparative study on parallelism in Go and Java,

highlighting how Go's goroutines provide a significant advantage in handling concurrent tasks, making

it a more efficient choice for parallel computing [1]. In contrast, Java relies on threads, which can

introduce more overhead in large-scale applications.

Another study by Badalyan and Borisenko [2] explored execution control in Golang and Python for

cloud orchestration. Their research concluded that Golang has significant performance benefits when

used for automating cloud infrastructure processes, particularly in environments requiring high

availability and fault tolerance [2].

This study aims to evaluate the performance of Golang Gin-Gonic and Golang Gin-Gonic with GORM

in the context of data storage, focusing on PostgreSQL databases and JSON file formats. PostgreSQL

is chosen for its reliability as an open-source relational database management system (RDBMS),

offering robustness and the ability to handle complex queries efficiently [4]. JSON, on the other hand,

is selected for its popularity as a lightweight and easy-to-read data exchange format, which is crucial

in high-performance web applications [10].

Suwarno and Yulandi [5] conducted a similar study comparing Golang with Node.js in backend

frameworks, concluding that Golang demonstrated superior concurrency handling, making it a better

choice for high-performance web applications [5]. Likewise, research by Galih Wiseso, Imrona, and

Alamsyah [4] examined the performance of PostgreSQL, comparing it with NoSQL alternatives like

Neo4j and MongoDB, further solidifying PostgreSQL's reliability for handling large datasets [4].

In terms of data serialization, Vanura and Kriz [6] compared the performance of JSON, XML, and

binary formats across different programming languages, noting that Golang's serialization libraries for

JSON performed particularly well in terms of speed and efficiency [6]. Whitney [7] further analyzed

Golang's concurrency model, focusing on Communicating Sequential Processes (CSP), which enables

Go to handle distributed computing environments efficiently [7]. This concurrency model is a key

reason why Golang Gin-Gonic is favored for building scalable, high-throughput web applications.

The results of this study showed that JSON processing is faster with basic Golang Gin-Gonic,

particularly for smaller datasets. Specifically, JSON processing was 53.63% faster than PostgreSQL

for 1000 entries [4]. Conversely, Golang Gin-Gonic with GORM exhibited better performance with

PostgreSQL, being 21% faster than JSON for the same dataset size [4].

Data Storage Database PostgreSQL and JSON File Format in Golang Using Gin-Gonic and Gin-Gonic with

GORM

 IDTECH – 35

By understanding the performance differences between Golang Gin-Gonic and Golang Gin-Gonic

with GORM in this context, this study is expected to provide guidance for software developers in

choosing the most suitable framework for their specific needs. Factors such as execution speed,

concurrency, and type of data storage are important considerations in selecting a framework for

optimal application development [9], [10].

2. METODOLOGY

2.1 Collection of Dummy Data

The data collection process for this research involves creating dummy data in minimal, moderate, and

maximal quantities, with the primary goal of analyzing the performance of the Golang Gin-Gonic and

Golang Gin-Gonic with GORM. The determination of the division of data quantities aims to ensure

that performance observations can be conducted more comprehensively and in detail.

By using three different categories of data quantities—minimal, moderate, and maximal—this study

can provide a more comprehensive picture of how the performance of these two with increasing data.

The selection of variations in data quantity also allows researchers to detect patterns or trends that may

emerge in their performance when faced with different workloads.

The importance of data quantity variation is key to producing reliable and relevant results. By

comparing the minimal, moderate, and maximal scenarios, this study not only provides information

about the absolute performance of each programming but also allows for the identification of potential

problems or specific advantages on different scales.

2.2 General Design

The general design explains the working process of the PostgreSQL database storage system and

JSON file format in Golang Gin-Gonic and Golang Gin-Gonic with GORM through flowcharts and

case study.

2.2.1 Main Flowchart

Figure 1 shows the flowchart for both Golang Gin-Gonic and Golang Gin-Gonic, including several

processes as follows,

a. Application Configuration, Configure the application using Golang Gin-Gonic and Golang

Gin-Gonic. This can include database connection configuration.

b. Error Checking, The application checks for possible errors. If there are errors, the application

sends an error message, displays the error message on the console, and terminates. If there are

no errors, the application continues its process.

c. Dashboard Display, Display a dashboard page to select dummy data in the form of a CSV

file and upload it.

d. Data Upload, Read the uploaded dummy data and store it in a temporary variable to be

inserted into JSON format and the PostgreSQL database.

e. Insert Dummy Data, Take the temporary variable containing the dummy data and insert it

first into a JSON file, then into the PostgreSQL database.

f. Error Checking, The application checks for possible errors. If there are errors, the application

sends an error message, displays the error message on the console, and terminates. If there are

no errors, the application continues its process.

g. Select JSON Table Page, Navigate to the JSON data table page for the next process.

h. Get JSON Data, Retrieve all data from the JSON file and display it on the JSON data table

page. Search data in the JSON file based on Id, Name, Email, and Gender. Display the

retrieved data on the JSON data table page.

Dewi Rosmala & Irsan Rasyidin

 IDTECH – 36

i. Error Checking, The application checks for possible errors. If there are errors, the application

sends an error message, displays the error message on the console, and terminates. If there are

no errors, the application continues its process.

j. Select JSON Update Page, Navigate to the JSON data update page for the next process.

k. Update JSON Data, Retrieve the data based on Id from the JSON file, display it on the JSON

data update page, and update the data.

l. Error Checking, The application checks for possible errors. If there are errors, the application

sends an error message, displays the error message on the console, and terminates. If there are

no errors, the application continues its process.

m. Select JSON Delete Page, Navigate to the JSON data deletion page for the next process.

Delete JSON Data, Retrieve the data based on Id from the JSON file and delete it or delete all data in

the JSON file.

Start

Configuration
Aplication

 Dashboard
Page

Upload Data
Dummy

Insert Data
Dummy

Choose Update
Data JSON Page

UpdateJSON

Choose Delete
Data JSON Page

1

Choose Table
Data JSON Page

1

Error ?

No

GetJSON

Yes

Error ?

No

Yes

Error ?

No

Error ?

No

DeleteJSON

2

Show Error in
conlose

2

2

1

2

Yes

Yes

Figure 1. Main Flowchart

Data Storage Database PostgreSQL and JSON File Format in Golang Using Gin-Gonic and Gin-Gonic with

GORM

 IDTECH – 37

Choose Table
Data PostgreSQL

Pge

GetPosgreSQL

Performance Results

DeletePostgreSQL

Error ?

No

2

Choose Update
Data PostgreSQL

Page

Error ?

No

1

1

End

1

2

2Yes

Yes
Error ?

No

Choose Delete
Data PostgreSQL

Page

Show Error in
conlose

UpdatePostgreSQL

Error ?

No

2
Yes

Yes

Figure 2. Main Flowchart of Golang(Continued)

Figure 2 show continuation of the flowchart for both Golang Gin-Gonic and Golang Gin-Gonic with

GORM applications includes several processes as follows,

a. Error Checking, The application checks for possible errors. If there are errors, the application

sends an error message, displays the error message on the console, and terminates. If there are

no errors, the application continues its process.

b. Select PostgreSQL Table Page, Navigate to the PostgreSQL data table page for the next

process.

c. Get PostgreSQL Data, Retrieve all data from the PostgreSQL database, display it on the

PostgreSQL data table page, and search for data in the PostgreSQL database based on Id,

Name, Email, and Gender. Display the retrieved data on the PostgreSQL data table page.

d. Error Checking, The application checks for possible errors. If there are errors, the application

sends an error message, displays the error message on the console, and terminates. If there are

no errors, the application continues its process.

e. Select PostgreSQL Update Page, Navigate to the PostgreSQL data update page for the next

process.

f. Update PostgreSQL Data, Retrieve the data based on Id from the PostgreSQL database,

display it on the PostgreSQL data update page, and update the data.

g. Error Checking, The application checks for possible errors. If there are errors, the application

sends an error message, displays the error message on the console, and terminates. If there are

no errors, the application continues its process.

h. Select PostgreSQL Delete Page, Navigate to the PostgreSQL data deletion page for the next

process.

i. Delete PostgreSQL Data, Retrieve the data based on Id from the PostgreSQL database and

delete it or delete all data in the PostgreSQL database.

Dewi Rosmala & Irsan Rasyidin

 IDTECH – 38

j. Error Checking, The application checks for possible errors. If there are errors, the application

sends an error message, displays the error message on the console, and terminates. If there are

no errors, the application continues its process.

k. Display Performance Results, Display the execution duration data in bar charts to compare

the average execution speed of JSON and PostgreSQL.

2.3 Case Study

Building web applications with the Gin framework in Golang, there are notable differences between

using Gin alone and integrating it with GORM for database interactions. Gin alone does not provide

built-in support for database operations, requiring developers to use raw SQL or another database

library, which increases the code complexity due to the additional boilerplate needed for handling

database connections and queries. In contrast, integrating Gin with GORM significantly simplifies

database interactions by leveraging GORM's ORM (Object-Relational Mapping) capabilities. This

integration reduces the amount of code required and enhances maintainability by allowing developers

to use structured commands like db.Create(&user) to insert records into the database effortlessly.

For example, to import, configure the database, and create entries in the database,

Gin-Gonic

import (

 "database/sql"

 _ "github.com/lib/pq"

)

func dbConfig(){

 connStr ,= "host=localhost user=youruser password=yourpassword dbname=yourdb

 sslmode=disable"

 var err error

 db, err = sql.Open("postgres", connStr)

 if err != nil {

 log.Fatal(err)

 }

 defer db.Close()

 if err = db.Ping(); err != nil {

 log.Fatal(err)

 }

 r ,= gin.Default()

}

func createUser(user User) {

 sqlStatement ,= `INSERT INTO users (username, email) VALUES ($1, $2) RETURNING id`

 err ,= db.QueryRow(sqlStatement, user.Username, user.Email).Scan(&user.ID)

 if err != nil {

 log.Fatalf("Unable to execute the query. %v", err)

 }

 log.Printf("Inserted user with ID %d\n", user.ID)

}

Data Storage Database PostgreSQL and JSON File Format in Golang Using Gin-Gonic and Gin-Gonic with

GORM

 IDTECH – 39

Gin-Gonic With GORM

import (

 "gorm.io/driver/postgres"

 "gorm.io/gorm"

)

func dbConfig(){

 dsn ,= "host=localhost user=youruser password=yourpassword dbname=yourdb

 sslmode=disable"

 var err error

 db, err = gorm.Open(postgres.Open(dsn), &gorm.Config{})

 if err != nil {

 log.Fatal(err)

 }

 r ,= gin.Default()

}

func createUser(user *User) {

 if err ,= db.Create(user).Error; err != nil {

 log.Fatalf("Unable to execute the query. %v", err)

 }

 log.Printf("Inserted user with ID %d\n", user.ID)

}

3. RESULTS AND DISCUSSION

3.1 Usage of Dummy Data

Dummy datasets are used for testing and development during the final project development. The

number of dummy data entries is 1000, 2000, and 3000, and these are used as representative samples

to assess application performance. The dummy data is converted into JSON format and stored in a

PostgreSQL database.

The application is tested and evaluated in various scenarios, from small-scale to larger-scale setups,

using different types of data. The objective is to identify and address potential performance issues and

ensure that the application functions well under various conditions and workloads.

Table 1. Usage for Dummy Data

Label JSON PostgreSQL

Insert 30 30

Get ALL 30 30

Get By ID 30 30

Get By Name 30 30

Get By Email 30 30

Get By Gender 30 30

Update By ID 30 30

Delete By ID 30 30

Delete ALL 30 30

Total 270 270

Based on Table 1, testing was conducted for each dummy data set across each type of storage, totaling

270 tests. Overall, the performance results amounted to 3240.

Dewi Rosmala & Irsan Rasyidin

 IDTECH – 40

3.2 Evaluation Results for Golang Gin-Gonic

Based on the test results, the Golang using Gin-Gonic produced an average time for JSON processing

of 30.435 ms for 1000 dummy data, 59.154 ms for 2000 dummy data, and 85.672 ms for 3000 dummy

data. For PostgreSQL, the average times were 46.757 ms for 1000 dummy data, 73.25 ms for 2000

dummy data, and 123.164 ms for 3000 dummy data. In comparison, JSON processing at 1000 dummy

data is 53.63% or 16.322 ms faster than PostgreSQL. For 2000 dummy data, JSON processing is

24.14% or 14.275 ms faster than PostgreSQL, and for 3000 dummy data, JSON processing is 43.76%

or 37.492 ms faster than PostgreSQL.

Table 2. Evaluation Results for Golang Gin-Gonic

Data Function Name
Average

(ms)

Standard

Deviation

(ms)

Outlier
Fastest

(ms)

Slowest

(ms)

1000

InsertJSON

1.605 0.728 0 0.707 3.732

2000 2.256 0.603 0 1.244 3.445

3000 2.84 0.477 0 1.763 3.95

1000

InsertPostgreSQL

28.021 7.839 0 19.304 43.959

2000 56.415 3.090 0 51.01 63.755

3000 100.011 6.563 0 87.939 112.979

1000

GetAllJSON

3.573 0.674 0 2.549 5.771

2000 7.417 0.981 0 5.994 9.761

3000 10.371 0.989 0 8.412 5.768

1000

GetAllPostgreSQL

2.386 1.095 0 1.243 5.88

2000 2.636 0.707 0 1.763 4.498

3000 3.981 0.926 0 2.773 12.626

1000

GetIdJSON

2.997 0.437 0 2.185 3.847

2000 6.907 0.959 0 5.496 8.74

3000 9.103 0.934 0 7.819 11.156

1000

GetIdPostgreSQL

1.067 1.35 0 0.505 7.449

2000 0.666 0.445 0 0.504 2.708

3000 0.592 0.202 0 0.318 1.203

1000

GetNameJSON

3.285 0.427 0 2.204 3.974

2000 6.573 0.776 0 5.217 8.921

3000 9.447 0.807 0 7.803 11.832

1000

GetNamePostgreSQL

3.95 1.188 0 1.978 8.081

2000 3.884 0.761 0 3.155 7.41

3000 5.717 0.503 0 4.895 7.307

1000

GetEmailJSON

3.185 0.408 0 2.152 4.015

2000 6.636 0.635 0 5.479 7.87

3000 10.327 0.858 0 8.391 12.227

1000

GetEmailPostgreSQL

4.998 0.82 0 3.853 7.049

2000 4.827 0.661 0 3.547 6.409

3000 6.694 0.352 0 6.04 7.6

1000

GetGenderJSON

3.220 0.372 0 2.46 3.939

2000 6.177 0.566 0 5.241 7.844

3000 9.582 0.711 0 8.298 11.357

Data Storage Database PostgreSQL and JSON File Format in Golang Using Gin-Gonic and Gin-Gonic with

GORM

 IDTECH – 41

1000

GetGenderPostgreSQL

2.721 1.292 1 0.856 5.249

2000 1.662 0.324 0 1.231 2.31

3000 2.26 0.528 0 1.47 3.386

1000

UpdateJSON

7.646 0.824 0 6.518 10.157

2000 14.217 0.829 0 12.662 16.589

3000 21.214 1.377 0 19.219 24.778

1000

UpdatePostgreSQL

1.534 0.779 0 0.507 4.308

2000 1.028 0.611 0 0.505 3.248

3000 1.128 0.397 0 0.598 2.219

1000

DeleteIdJSON

4.318 0.375 0 3.508 5.019

2000 8.328 0.795 0 6.512 1.094

3000 12.205 1.264 0 10.561 15.524

1000

DeleteIdPostgreSQL

0.907 0.314 0 0.505 1.522

2000 0.56 0.138 0 0.503 9.793

3000 0.586 0.218 0 0.504 1.622

1000

DeleteAllJSON

0.653 0.343 0 0.503 2.205

2000 0.633 0.239 0 0.096 1.505

3000 0.583 0.179 0 0.504 1.443

1000

DeleteAllPostgreSQL

1.173 0.853 0 0.503 3.568

2000 1.736 0.584 0 0.509 3.142

3000 2.195 0.693 0 1.509 4.088

3.2 Evaluation Results for Golang Gin-Gonic with GORM

Based on the test results, the Golang using Gin-Gonic with GORM produced an average time for

JSON processing of 33.314ms for 1000 dummy data, 59.164ms for 2000 dummy data, and 89.042ms

for 3000 dummy data. For PostgreSQL, the average times were 27.533ms for 1000 dummy data,

49.084ms for 2000 dummy data, and 66.849ms for 3000 dummy data. In comparison, PostgreSQL

processing at 1000 dummy data is 21% or 5.781ms faster than JSON. For 2000 dummy data,

PostgreSQL processing is 20.54% or 10.08ms faster than JSON, and for 3000 dummy data,

PostgreSQL processing is 33.2% or 22.193ms faster than JSON.

Table 3. Evaluation Results for Golang Gin-Gonic with GORM

Data Function Name
Average

(ms)

Standard

Deviation

(ms)

Outlier
Fastest

(ms)

Slowest

(ms)

1000

InsertJSON

2.828 7.62 0 0.629 43.087

2000 2.821 3.424 0 1.108 20.389

3000 2.855 0.588 0 2.073 4.369

1000

InsertPostgreSQL

13.909 3.663 0 10.955 28.82

2000 27.661 8.595 1 20.371 58.812

3000 36.595 5.468 0 30.922 51.315

1000

GetAllJSON

3.599 0.918 0 2.117 5.975

2000 7.547 1.809 0 5.631 12.617

3000 10.105 1.252 0 8.607 15.405

1000

GetAllPostgreSQL

3.216 0.76 0 2.394 5.233

2000 6.309 0.9 0 4.569 8.743

3000 8.65 1.027 0 6.843 10.794

Dewi Rosmala & Irsan Rasyidin

 IDTECH – 42

1000

GetIdJSON

3.468 0.718 0 2.152 4.912

2000 6.221 0.601 0 5.055 7.617

3000 9.588 0.765 0 8.169 10.624

1000

GetIdPostgreSQL

0.451 0.227 0 0.504 1.035

2000 0.513 0.136 0 0.177 0.84

3000 0.527 0.13 0 0.055 0.995

1000

GetNameJSON

3.584 0.55 0 2.364 4.827

2000 6.337 0.863 0 5.155 8.759

3000 9.382 0.752 0 8.471 10.967

1000

GetNamePostgreSQL

1.992 0.402 0 1.071 3.25

2000 3.461 0.488 0 2.774 5.382

3000 5.349 0.455 0 4.535 6.664

1000

GetEmailJSON

3.62 1.047 0 2.367 6.535

2000 6.437 0.683 0 5.503 8.296

3000 11.732 1.503 0 8.909 15.28

1000

GetEmailPostgreSQL

2.773 0.329 0 2.274 3.69

2000 4.869 0.922 0 4.017 9.047

3000 7.901 2.027 0 6.014 14.429

1000

GetGenderJSON

3.408 0.788 0 2.185 5.268

2000 6.457 0.493 0 5.648 7.878

3000 12.218 2.513 0 8.54 20.187

1000

GetGenderPostgreSQL

1.842 0.479 0 1.171 3.192

2000 2.47 0.572 0 1.704 3.846

3000 3.616 0.715 0 2.582 5.184

1000

UpdateJSON

7.336 0.741 0 6.188 9.723

2000 14.345 2.256 0 12.597 25.092

3000 20.862 1.301 0 19.211 25.131

1000

UpdatePostgreSQL

1.265 0.771 0 0.506 4.694

2000 1.161 0.629 0 0.506 4.232

3000 1.183 0.516 0 0.562 3.602

1000

DeleteIdJSON

4.987 1.498 0 3.299 11.914

2000 8.366 2.427 0 6.872 20.724

3000 11.764 1.092 0 10.391 15.777

1000

DeleteIdPostgreSQL

0.779 0.207 0 0.545 1.266

2000 0.914 0.231 0 0.505 1.256

3000 0.726 0.204 0 0.505 1.512

1000

DeleteAllJSON

0.574 0.2 0 0.504 1.014

2000 0.633 0.292 0 0.505 1.566

3000 0.536 0.222 0 0.069 1.511

1000

DeleteAllPostgreSQL

1.306 0.666 0 0.503 3.325

2000 1.726 0.507 0 1.029 3.081

3000 2.302 0.761 0 1.512 4.381

Data Storage Database PostgreSQL and JSON File Format in Golang Using Gin-Gonic and Gin-Gonic with

GORM

 IDTECH – 43

4. CONCLUSION

Performance testing was conducted to measure the duration and outliers in data storage using

PostgreSQL and JSON file format with Golang Gin-Gonic and Golang Gin-Gonic with GORM. The

testing was performed in two stages, alpha testing for Golang Gin-Gonic and alpha testing for Golang

Gin-Gonic with GORM, using three sizes of dummy data, 1000, 2000, and 3000.

For the evaluation of Golang using Gin-Gonic, the results indicated that the average time for JSON

processing was 30.435 ms for 1000 dummy data, 59.154 ms for 2000 dummy data, and 85.672 ms for

3000 dummy data. Conversely, the average times for PostgreSQL were 46.757 ms for 1000 dummy

data, 73.25 ms for 2000 dummy data, and 123.164 ms for 3000 dummy data. Comparing the two,

JSON processing was 53.63% or 16.322 ms faster than PostgreSQL for 1000 dummy data. For 2000

dummy data, JSON processing was 24.14% or 14.275 ms faster, and for 3000 dummy data, it was

43.76% or 37.492 ms faster than PostgreSQL.

In the assessment of Golang Gin-Gonic with GORM, the findings showed that JSON processing

averaged 33.314 ms for 1000 dummy data, 59.164 ms for 2000 dummy data, and 89.042 ms for 3000

dummy data. For PostgreSQL, the average times were 27.533 ms for 1000 dummy data, 49.084 ms for

2000 dummy data, and 66.849 ms for 3000 dummy data. This demonstrated that PostgreSQL

processing was 21% or 5.781 ms faster than JSON for 1000 dummy data, 20.54% or 10.08 ms faster

for 2000 dummy data, and 33.2% or 22.193 ms faster for 3000 dummy data.

Overall, the performance tests revealed that for basic Golang Gin-Gonic, JSON processing is generally

faster than PostgreSQL, particularly as the size of the dummy data increases. However, when using

Golang Gin-Gonic with GORM, PostgreSQL exhibits better performance compared to JSON

processing. This suggests that while JSON may be more efficient for simpler setups, PostgreSQL with

GORM integration provides superior performance for larger and potentially more complex data sets.

When evaluating PostgreSQL performance for both Golang Gin-Gonic and Golang Gin-Gonic with

GORM, it was observed that the basic Golang Gin-Gonic setup had slower average times for

PostgreSQL across all data sizes compared to its JSON processing counterpart. Specifically,

PostgreSQL took 46.757 ms for 1000 dummy data, 73.25 ms for 2000 dummy data, and 123.164 ms

for 3000 dummy data, indicating increased processing times as data size grew.

On the other hand, PostgreSQL performance improved significantly when used with Golang Gin-

Gonic with GORM. The average times for PostgreSQL were notably faster, 27.533 ms for 1000

dummy data, 49.084 ms for 2000 dummy data, and 66.849 ms for 3000 dummy data. This

enhancement in performance highlights the efficiency of integrating GORM with PostgreSQL, making

it a more suitable choice for handling larger volumes of data with better processing times.

REFERENCES

[1] T. Andersson and C. Brenden, "Parallelism in Go and Java," Digitala Vetenskapliga Arkivet,

2018.

[2] D. Badalyan and O. Borisenko, "Ansible execution control in Python and Golang for cloud

orchestration," SoftwareX, 2022.

[3] P. Dymora and A. Paszkiewicz, "Performance analysis of selected programming languages in the

context of supporting decision-making processes for Industry 4.0," MDPI, pp. 1-17, 2020.

[4] L. Galih Wiseso, M. Imrona, and A. Alamsyah, "Analisis performa Neo4j, MongoDB, dan

PostgreSQL sebagai database manajemen Big," e-Proceeding of Engineering, p. 9690, 2020.

[5] Suwarno and A. P. Yulandi, "Analisis performa backend framework, Studi komparasi framework

Golang dan Node.js," Jurnal Riset Sistem Informasi Dan Teknik Informatika (JURASIK), pp.

155-168, 2023.

[6] J. Vanura and P. Kriz, "Performance evaluation of Java, JavaScript and PHP serialization

libraries for XML, JSON and binary formats," Lecture Notes in Computer Science (including

Dewi Rosmala & Irsan Rasyidin

 IDTECH – 44

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 166-

175, 2018.

[7] J. G. Whitney, "Distributed execution of communicating sequential process-style concurrency,

Golang case study," 2019.

[8] S. Wiji and S. Wiwin, "Implementasi web service dengan metode REST berbasis Golang pada

layanan Google Cloud Platform di PT Sumber Alfaria Trijaya, Tbk," Universitas Kristen Satya

Wacana Salatiga, 2020.

[9] R. Santoso and H. Firmansyah, "Efisiensi kinerja framework Gin-Gonic dalam pengembangan

aplikasi web," 2018.

[10] Y. A. Susetyo, P. O. Saian, and R. Somya, "Pembangunan sistem informasi zona potensi sumber

daya kelautan Kabupaten Gunungkidul berbasis HMVC menggunakan Google Maps API dan

JSON," 2018.

